วันจันทร์ที่ 27 ตุลาคม พ.ศ. 2551

WiMAX จากเทคโนโลยีสู่ธุรกิจสื่อสารไร้สายยุคใหม่ ตอนที่ 1-3
โดย MKT วันที่ 28/09/2549 14:03

“บทความมินิซีรีส์เรื่องยาวเพื่อความเข้าใจทั้งทางด้านเทคนิค การประยุกต์ใช้งาน และธุรกิจที่เกี่ยวเนื่องกับเทคโนโลยีสื่อสารไร้สายอัตราเร็วสูง”
นอกจากนั้น การติดตั้งสถานีฐานหรือจุดเชื่อมต่อภายในเขตเมืองที่มีจำนวนประชากรหรือผู้ใช้บริการหนาแน่นก็มักนิยมติดตั้งให้ถี่ เพื่อให้สามารถรองรับการใช้งานรับส่งข้อมูลที่น่าจะมีอยู่มาก ทำให้ต้องปรับลดกำลังส่งของสถานีฐานลง อันเป็นเหตุให้พื้นที่ใช้งานยิ่งลดลงมากกว่าการติดตั้งสถานีฐานชนิดเดียวกันในบริเวณชานเมือง หรือแม้กระทั่งนอกเมือง ซึ่งมีความหนาแน่นของผู้ใช้งานต่ำลง ในทางปฏิบัติผู้ประกอบการจึงมักหลีกเลี่ยงที่จะใช้ความถี่สูงมากๆ ในการให้บริการ เนื่องจากจะส่งผลกระทบต่อเงินลงทุนโดยตรง ทำให้ต้องมีการติดตั้งอุปกรณ์สถานีฐานหรือจุดเชื่อมต่อมากกว่าผู้ประกอบการที่ได้รับสัมปทานความถี่ต่ำกว่า
โดยทั่วไปความคาดหวังของผู้บริโภคที่มีต่อเทคโนโลยีสื่อสารไร้สายประเภทต่างๆ นั้นมักจะมีมากเกินกว่าที่ขีดความสามารถของเครือข่ายเอง เทคโนโลยีหลายชนิดที่ได้รับการสร้างขึ้นด้วยหลักการที่ดีทางวิศวกรรม แต่ไม่สามารถพัฒนาต่อไปเป็นสินค้าในเชิงพาณิชย์ได้ หรือแม้เป็นสินค้าในเชิงพาณิชย์แล้วแต่กลับไม่ประสบความสำเร็จในทางการตลาด ส่วนหนึ่งเป็นเพราะความคาดหวังที่มากเกินไปของผู้บริโภคซึ่งรูปที่ 4 แสดงถึง วัฏจักรความคาดหวัง หรือ Hype Circle ซึ่งเริ่มจากการกระตุ้นหรือเปิดตัวเทคโนโลยีใหม่โดยผู้ผลิต (Technology trigger) อันจะส่งผลให้เกิดกระแสการกล่าวถึงและมีความคาดหวัง (Peak of Inflated Expectation) ในเทคโนโลยีนั้นๆ ซึ่งส่วนใหญ่มักเป็นการคาดหวังที่มากกว่าที่เทคโนโลยีในขณะนั้นจะพึงให้ได้อันจะทำให้ผู้บริโภครู้สึกผิดหวังและไม่ศรัทธาในเทคโนโลยีนั้น (Trough of Disillusionment) หลายๆ เทคโนโลยีอาจได้รับการพัฒนามากขึ้นพร้อมๆ กับมีการประชาสัมพันธ์ในทิศทางที่ถูกต้องประจวบกับความพร้อมของปัจจัยเกื้อหนุนหลายๆ ประการ จนทำให้ผู้บริโภคเริ่มคุ้นเคยและค่อยๆ ยอมรับ (Slope Enlightment) และกลายเป็นเทคโนโลยีที่อยู่ตัว (Plateau of Productivity) ในที่สุดดังเช่นเทคโนโลยี Wi-Fi มาตรฐาน IEEE802.11a/b/g ที่ปัจจุบันได้รับการติดตั้งในเครื่องคอมพิวเตอร์โน้ตบุ๊กทั่วไป ทั้งๆ ที่ในอดีตเคยถูกมองว่าไม่มีประสิทธิภาพ
ประเด็นสำคัญก็คือวัฎจักรความคาดหวังในรูปที่ 4 ซึ่งสะท้อนภาพเหตุการณ์ในเดือนมิถุนายน พ.ศ. 2547 แสดงให้เห็นว่าเทคโนโลยี WiMAX กำลังอยู่ในช่วงที่ได้รับการกล่าวถึงและมีการคาดหวังมากที่สุด ซึ่งแน่นอนว่าในช่วงเวลานั้น WiMAX ยังไม่สามารถรองรับการสื่อสารในขณะกำลังเคลื่อนที่ได้ยิ่งไปกว่านั้นยังไม่มีการผลิตอุปกรณ์เครือข่าย หรือแม้กระทั่งเครื่องลูกข่ายในเชิงพาณิชย์ทั้งสิ้น ผลที่ตามมาก็คือการเสื่อมศรัทธาในเทคโนโลยีดังกล่าว ในช่วงเวลานั้น บริษัท Gartnet Inc. ซึ่งเป็นทางผู้จัดทำเส้นวัฎจักรความคาดหวัง จึงจัดให้เทคโนโลยี WiMAX อยู่ในกลุ่มที่ต้องใช้เวลาประมาณ 2-5 ปี กว่าที่จะได้รับการยอมรับและประสบความสำเร็จในตลาดโทรคมนาคมซึ่งหากเป็นเช่นนั้นจริง ก็ย่อมหมายความว่าเทคโนโลยี WiMAX จะเริ่มได้รับการยอมรับตั้งแต่ พ.ศ. 2549 และน่าจะประสบความสำเร็จจนกลายเป็นมาตรฐานการสื่อสารไร้สายอีกชนิดหนึ่ง ที่มีส่วนแบ่งการตลาดสูงสุดภายใน พ.ศ. 2552 และในความเป็นจริงนั้นอุปกรณ์เครือข่ายและเครื่องลูกข่าย WiMAX ก็เริ่มมีการจำหน่ายและได้รับการติดตั้งในเครือข่ายของประเทศต่างๆ ทั่วโลกมาตั้งแต่ต้นปี พ.ศ. 2549 จึงมีความเป็นไปได้ที่ WiMAX กำลังก้าวเข้าสู่การเป็นมาตรฐานสื่อสารไร้สายสากลภายในเวลาไม่นานนัก
ภาพรวมของมาตรฐานเทคโนโลยีสื่อสารไร้สาย
แม้เทคโนโลยีสื่อสารไร้สายส่วนใหญ่ในยุคแรกจะอยู่ในรูปของเครือข่ายโทรศัพท์เคลื่อนที่ซึ่งมีการพัฒนาต่อเนื่องจากยุค 2G สู่ยุค 2.5G และเข้าสู่ยุค 3G ซึ่งรองรับการสื่อสารแบบมัลติมีเดียในขณะผู้ใช้งานกำลังเคลื่อนที่ แต่ยังมีมาตรฐานสื่อสารไร้สายชนิดอื่นๆ ที่ได้รับการพัฒนาขึ้นทั้งในช่วงเวลาเดียวกับการเติบโตของมาตรฐานโทรศัพท์เคลื่อนที่ และที่ได้รับการพัฒนาขึ้นในภายหลังนอกจากนั้น แม้มาตรฐานโทรศัพท์เคลื่อนที่ในสายตาตระกูล GSM ซึ่งเป็นมาตรฐานของ ETSI (European Telecommunication Standards Institute) แห่งสหภาพยุโรปจะมีส่วนแบ่งทางการตลาดมากที่สุดในโลก แต่มาตรฐานสื่อสารไร้สายอื่นๆ ที่สำคัญก็เป็นผลงานของสหรัฐอเมริกาแทบทั้งสิ้นองค์กรสำคัญที่ทำหน้าที่ออกแบบและวางข้อกำหนดทางวิศวกรรมไฟฟ้าในสหรัฐอเมริกาคือ IEEE (Institute of Electrical and Electronics Engineer) ได้วางมาตรฐานเทคนิคการสื่อสารไร้สายที่สำคัญ เช่น IEEE802.11 ซึ่งต่อมาได้รับการพัฒนาเป็นเทคโนโลยี Wi-Fi จัดว่าเป็นหนึ่งในเทคโนโลยีประเภท WLAN (Wireless LAN) ที่มีการใช้งานอย่างกว้างขวางในลักษณะของเครือข่ายเฉพาะพื้นที่ (LAN หรือ Local Area Network) นอกจากนี้ยังเป็นผู้วางข้อกำหนดมาตรฐาน IEEE802.15 หรือ Bluetooth ที่กลายเป็นเทคโนโลยีไร้สายสำหรับการเชื่อมต่ออุปกรณ์อิเล็กทรอนิกส์ในระยะใกล้ (PAN หรือ Personal Area Network)และในปัจจุบันกับมาตรฐาน WiMAX ภายใต้ข้อกำหนด IEEE802.16 ซึ่งเป็นเทคโนโลยีการสื่อสารไร้สายในพื้นที่กว้าง (MAN หรือ Metropolitan Area Network) ซึ่งในอนาคตอันใกล้ IEEE จะออกข้อกำหนด IEEE802.20 เพื่อใช้สำหรับการสื่อสารในลักษณะเดียวกับเครือข่ายโทรศัพท์เคลื่อนที่แบบเซลลูลาร์โดยทั่วไป (WAN หรือ Wide Area Network) รายละเอียดดังแสดงในรูปที่ 5
เทคโนโลยีสื่อสารไร้สายชนิดต่างๆ ล้วนมีคุณลักษณะที่แตกต่างกัน ทั้งในแง่ของอัตราเร็วในการสื่อสารข้อมูล และระยะครอบคลุม ทั้งนี้ สามารถจัดแบ่งกลุ่มของเทคโนโลยีเหล่านี้โดยพิจารณาจากคุณลักษณะทั้ง 2 ประการข้างต้น ออกได้ดังแสดงในรูปที่ 6 โดยในกลุ่มของเทคโนโลยีสื่อสารที่ให้อัตราเร็วในการสื่อสารต่ำนั้น ประกอบไปด้วย เทคโนโลยี Bluetooth ซึ่งระยะทางในการใช้งานไม่มากนักเหมาะสำหรับการรับส่งข้อมูลระหว่างอุปกรณ์สื่อสาร หรือเครื่องคอมพิวเตอร์ในระยะทางไม่กี่เมตร
ในขณะที่เทคโนโลยีโทรศัพท์เคลื่อนที่ทั้งหมดก็จัดอยู่ในกลุ่มดังกล่าวเช่นเดียวกัน หากแต่มีความสามารถรองรับการสื่อสารในระยะทางไกลมากขึ้น โดยเทคโนโลยี 3G ซึ่งรองรับการสื่อสารด้วยอัตราเร็วที่สูงกว่าย่อมจะมีรัศมีหรือพื้นที่ให้บริการแคบกว่าเทคโนโลยี 2.5G และ 2G ซึ่งมีขีดความสามารถในการรับส่งข้อมูลด้วยอัตราเร็วที่ลดต่ำลงไปตามลำดับทั้งนี้ ในบางสถาบันมักนิยามว่าอัตราเร็วที่ถือว่าต่ำกว่าย่านบรอดแบนด์คือ 512 กิโลบิตต่อวินาที ดังนั้น มาตรฐานหรือเทคโนโลยีสื่อสารชนิดใดที่มีอัตราเร็วในการรับส่งข้อมูลต่ำกว่าค่าดังกล่าว ก็จะถือว่าเป็นกลุ่มที่มีอัตราเร็วในการสื่อสารต่ำ (Narrow-band Communication) โดยปริยายสำหรับกลุ่มที่เป็นเทคโนโลยีสื่อสารไร้สายแบบบรอดแบนด์นั้น ประกอบไปด้วยกลุ่มที่ออกแบบให้ใช้งานประจำที่ซึ่งได้แก่การสื่อสารผ่านดาวเทียม เทคโนโลยีการสื่อสารแบบ MMDS (Multichannel Multipoint Distribution System) และ LMDS (Local Multipoint Distribution System) โดยผู้ใช้งานไม่สามารถรับส่งสัญญาณได้ในขณะเคลื่อนที่นอกจากนั้น ยังมีกลุ่มที่สามารถใช้งานและเคลื่อนที่ได้ในระยะทางจำกัด ซึ่งก็คือเทคโนโลยี Wi-Fi (มาตรฐาน IEEE802.11a/b/g) ที่มีรัศมีทำการโดยทั่วไปไม่เกิน 100 เมตร และกลุ่มสุดท้ายก็คือเทคโนโลยีที่สามารถกระจายสัญญาณไปได้เป็นระยะทางไกลๆ เช่น การสื่อสารมวลชนแบบดิจิตอล (Digital Broadcasting) อันได้แก่ มาตรฐาน DMB (Digital Video Broadcasting) รวมไปถึงเทคโนโลยี WiMAX ซึ่งแม้จะจัดให้ WiMAX เป็นเทคโนโลยีไร้สายแบบบรอดแบนด์และรองรับการสื่อสารไร้สายในระยะทางไกลๆ แต่ในทางเทคนิค ข้อกำหนดของเทคโนโลยี WiMAX ในระยะแรกๆ (มาตรฐาน IEEE802.16a/d) ก็ยังจำกัดการให้บริการให้เป็นแบบประจำที่ โดยผู้ใช้งานไม่สามารถเคลื่อนที่ไปมาในขณะรับส่งสัญญาณกับสถานีฐาน WiMAX ได้ ซึ่งจำเป็นต้องใช้เวลาในการพัฒนามาตรฐาน WiMAX อีกระยะหนึ่งจนกว่าจะสามารถรองรับการสื่อสารแบบเคลื่อนที่ได้ (มาตรฐาน IEEE802.16e)อนึ่งในทางปฏิบัติ นิยมเรียกบรรดาเทคโนโลยีสื่อสารไร้สาย ที่มีอัตราเร็วในการรับส่งข้อมูลสูงในระดับบรอดแบนด์ และมีพื้นที่ให้บริการกว้างกว่า Broadband Wireless Access เรียกโดยย่อว่า BWA ซึ่งเทคโนโลยี WiMAX ก็ถือเป็นทางเลือกหนึ่งของเทคโนโลยี BMA นั่นเอง
เทคโนโลยีโทรศัพท์เคลื่อนที่ 3G กับการสื่อสารอัตราเร็วสูง
เทคโนโลยีโทรศัพท์เคลื่อนที่ถือเป็นเทคโนโลยีสื่อสารไร้สายเชิงพาณิชย์ที่มีการใช้งานมากที่สุด นับจากการเปิดให้บริการโทรศัพท์เคลื่อนที่ยุคที่ 1 (First Generation Mobile หรือ 1G) ซึ่งมีมาตรฐานมากมายหลากหลายที่สำคัญก็ได้แก่มาตรฐานโทรศัพท์เคลื่อนที่ NMT (Nordic Mobile Telephone) และ AMPS (Advanced Mobile Phone System) ซึ่งประเทศไทยมีการนำเครือข่ายโทรศัพท์เคลื่อนที่ทั้ง 2 ระบบนี้มาเปิดใช้งานตั้งแต่ พ.ศ. 2529 โดยองค์การโทรศัพท์แห่งประเทศไทย (ทศท.) และการสื่อสารแห่งประเทศไทย (กสท.) ในขณะนั้น มาตรฐานโทรศัพท์เคลื่อนที่ 1G สามารถรองรับการสื่อสารแบบสนทนา (Voice Communication) ได้ในขณะเคลื่อนที่แต่ก็ยังมีข้อจำกัดในการรับส่งข้อมูลอยู่มาก ไม่ว่าจะเป็นเทคนิคการมอดูเลตสัญญาณคลื่นวิทยุแบบ FSK (Frequency Shift Keying) ซึ่งมีความต้านทานต่อสัญญาณรบกวนได้เพียงระดับหนึ่ง ประกอบกับกระบวนการจัดการระบบสัญญาณ (Signaling) ที่ไม่รัดกุมการรับส่งข้อมูลผ่านเครือข่ายโทรศัพท์เคลื่อนที่ 1G แม้ทำได้ก็เพียงอัตราเร็วต่ำๆ เช่น 100-200 บิตต่อวินาทีไม่สามารถนำไปใช้งานเชิงพาณิชย์ได้แต่อย่างใดการพัฒนามาตรฐานเครือข่ายโทรศัพท์เคลื่อนที่สู่ยุค 2G แม้จะเกิดจากปัจจัยทางการเมืองด้วยความพยายามของสหภาพยุโรปที่ต้องการออกแบบมาตรฐานโทรศัพท์เคลื่อนที่ GSM (Global System for Mobile Communication) ให้สามารถนำไปใช้งานได้ในทุกประเทศที่มีการติดตั้งเครือข่าย GSM อยู่พร้อมกับการริเริ่มเก็บเลขหมายผู้ใช้บริการไว้ใน SIM Card แทนที่จะฝังไว้ในตังเครื่องลูกข่ายและการออกแบบให้เครือข่ายมีการรับส่งสัญญาณตามกระบวนการดิจิตอลอย่างสมบูรณ์แบบ ทำให้ฐานผู้ใช้โทรศัพท์เคลื่อนที่ GSM เพิ่มขึ้นอย่างรวดเร็วทั่วโลกภายใต้การตอบโต้ของสหรัฐอเมริกาที่ผลักดันมาตรฐานโทรศัพท์เคลื่อนที่ CDMA ซึ่งมีความเป็นเลิศทางเทคโนโลยีเหนือกว่า GSM เพื่อหวังแย่งชิงความเป็นเจ้าเทคโนโลยีสื่อสารไร้สาย แต่ความล่าช้าในการเปิดตัวเทคโนโลยี CDMA ก็ทำให้มาตรฐานดังกล่าวเกือบลิมสลายเนื่องจากฐานผู้ใช้บริการ CDMA ทั่วโลกมีน้อยกว่า GSM มากอย่างไรก็ตามทั้ง 2 มาตรฐานต่างได้รับการออกแบบมาให้สามารถรับส่งข้อมูลได้ด้วยอัตราเร็ว 9.6 กิโลบิตต่อวินาที ผ่านรูปแบบการเชื่อมต่อวงจรแบบสวิทช์วงจร (Circuit Switched) ซึ่งถือเป็นอัตราเร็วที่ไม่ต่ำมากนักเมื่อเทียบกับความต้องการและความจำเป็นในการสื่อสารข้อมูลผ่านเครือข่ายไร้สายในขณะนั้นทั้งนี้ ประเทศไทยเริ่มมีการเปิดให้บริการโทรศัพท์เคลื่อนที่ GSM โดยบริษัท แอดวานซ์ อินโฟร์ เซอร์วิส จำกัด (มหาชน) และบริษัท โทเทิ่ล แอ็คเซ็ส คอมมูนิเคชั่น จำกัด (มหาชน) ในปี พ.ศ. 2537ความพยายามในการหารายได้ในรูปแบบใหม่ๆ โดยเฉพาะการสื่อสารข้อมูลของผู้ประกอบการเครือข่ายโทรศัพท์เคลื่อนที่ ทำให้เกิดการพัฒนาเทคโนโลยี 2.5G ขึ้น ภายใต้เงื่อนไขที่ให้มีการเปลี่ยนแปลงโครงสร้างของเครือข่าย 2G ให้น้อยที่สุดพร้อมกับการนำเทคโนโลยีเชื่อมต่อวงจรแบบแพ็กเกตสวิตช์ (Packet Switched) ซึ่งอนุญาตให้ผู้ใช้งานหลายรายสามารถรับส่งข้อมูลได้บนวงจรเดียวกัน ในลักษณะคล้ายกับเครือข่ายอินเทอร์เน็ตมาใช้งาน มีการพัฒนาเทคโนโลยี GPRS (Generic Packet Radio Service) ซึ่งต่อมาได้มีการพัฒนาไปเป็นเทคโนโลยี EDGE (Enhanced Data rate for GPRS Evolution) สำหรับใช้เพิ่มขีดความสามารถของเครือข่าย GSM ให้สามารถรองรับการสื่อสารข้อมูลได้ดีขึ้นแต่ก็ยังนับว่าเครือข่าย GPRS หรือ EDGE ไม่สามารถตอบสนองความต้องการใช้งานแบบ BWA ได้ เนื่องจากอัตราเร็วสูงสุดในการรับส่งข้อมูลทั้ง 171.2 และ 384 กิโลบิตต่อวินาที ของ GPRS และ EDGE นั้นเป็นอัตราเร็วรวมของความถี่ใช้งานแต่ละช่อง ในทางปฏิบัติย่อมไม่สามารถเปิดใช้งานได้อย่างเต็มประสิทธิภาพ เนื่องจากต้องกันทรัพยากรส่วนหนึ่งไว้เพื่อรองรับการสนทนาตามปกติ ก็ยิ่งทำให้อัตราเร็วในการรับส่งข้อมูลลดต่ำลงมากๆ และเหตุการณ์ณ์ในลักษณะนี้ก็เกิดขึ้นกับเทคโนโลยี 2.5G สำหรับเครือข่ายโทรศัพท์เคลื่อนที่ในตระกูล CDMA เช่นเดียวกันจึงกล่าวได้ว่าเทคโนโลยี 2.5G เป็นเพียงการเตรียมการเครือข่าย 2G เพื่อให้บริการสื่อสารข้อมูลแบบง่ายๆ เท่านั้น ยังไม่สามารถเป็นช่องทางในการสื่อสารข้อมูลไร้สายอัตราเร็วสูงได้อย่างแท้จริงแม้เมื่อมีการพัฒนาเครือข่ายจากยุค 2.5G ไปสู่มาตรฐานเครือข่ายโทรศัพท์เคลื่อนที่ 3G โดยค่าย GSM พัฒนาจากเทคโนโลยี GPRS/EDGE ไปเป็น W-CDMA (Wideband CDMA) ส่วนค่าย CDMA พัฒนาจาก CDMA 2000 1x ไปเป็น CDMA 1x EV-DV ดังแสดงในรูปที่ 7
มาตรฐานเหล่านี้ก็ยังไม่อาจรองรับปริมาณการใช้งานสื่อสารข้อมูลแบบ BWA ได้เนื่องจากมาตรฐาน W-CDMA เองยังคงมีขีดจำกัดในการรองรับการสื่อสารข้อมูลด้วยอัตราเร็วเพียง 384 กิโลบิตต่อวินาที ต่างจากเทคโนโลยี DEGE เพียงรูปแบบการแพร่กระจายสัญญาณด้วยการใช้เทคโนโลยี CDMA (Code Division Multiple Access) แทนที่จะเป็นแบบ TDMA (Time Division Multiple Access) ซึ่งเป็นเทคโนโลยีพื้นฐานของเครือข่ายโทรศัพท์เคลื่อนที่ตระกูล GSMส่วนเทคโนโลยี CDMA 1x EV-DV นั้นแม้จะสามารถรองรับการสื่อสารข้อมูลด้วยอัตราเร็วถึง 2.4 เมกะบิตต่อวินาที แต่ก็ยังมีข้อจำกัดในเรื่องของการจัดรูปแบบการให้บริการสำหรับผู้ใช้งานแต่ละราย (Traffic Profile Management)เพื่อเป็นการพัฒนาให้เครือข่ายโทรศัพท์เคลื่อนที่ 3G มีขีดความสามารถรองรับการใช้งานแบบ BWA ได้อย่างมีประวิทธิภาพ สถาบันผู้รับผิดชอบด้านมาตรฐานทางเทคนิคของทั้งมาตรฐาน W-CDMA และ CDMA 1x EV-EV อันได้แก่ 3GPP (Third Generation Partnership Program) และ 3GPP2 ตามลำดับ จึงมีการกำหนดมาตรฐานทางเทคนิคต่อจากยุค 3G โดยเครือข่าย W-CDMA จะได้รับการพัฒนาขีดความสามารถให้เพิ่มอัตราเร็วในการสื่อสารข้อมูลด้วยเทคโนโลยี HSDPA (High Speed Downlink Packet Access) และ HSUPA (High Speed Uplink Packet Access) ซึ่งปัจจุบันกำลังอยู่ในช่วงของการพัฒนาทางเทคนิคสำหรับมาตรฐาน CDMA 1X EV-DV ก็มีแผนในการไปเป็น CDMA2000 3Xแต่ในปัจจุบัน ผู้สนับสนุนหลักอันได้แก่ บริษัท Qualcomm Inc. กลับมีแนวทางที่เปลี่ยนแปลง โดยมีการลงทุนซื้อเทคโนโลยี Flash OFDM ของบริษัท Flarion จากประเทศสหรัฐอเมริกา นัยว่าจะมีการผลักดันเทคโนโลยีใหม่นี้ให้เป็นทางเลือกสำหรับบริการแบบ BWA แทนที่จะใช้เทคโนโลยี CDMA ดังที่เคยเป็นมา จึงยากที่จะคาดเดาถึงอนาคตของเทคโนโลยี CDMA2000 3X
นอกจากมาตรฐานโทรศัพท์เคลื่อนที่ที่ได้กล่าวถึงแล้ว ยังมีมาตรฐานอื่นๆ ที่น่าสนใจและมีการนำมาเปรียบเทียบทางเทคนิคดังแสดงในตารางที่ 1 มาตรฐานโดยส่วนใหญ่ล้วนเป็นเทคโนโลยีระหว่างการพัฒนาจากเครือข่ายยุค2.5G ไปเป็น3G ยกเว้นเทคโนโลยี PDC-P ซึ่งเป็นมาตรฐานเฉพาะของประเทศญี่ปุ่น


ชื่อเรื่อง : มาตรฐาน IEEE 802.11 WLAN: ความรู้เบื้องต้น ช่องโหว่ และการรักษาความปลอดภัย ( ตอนที่ 1)เรียบเรียงโดย : ดร. ศิวรักษ์ ศิวโมกษธรรม เผยแพร่เมื่อ : 29 พฤษภาคม 2546

กล่าวนำ

ปัจจุบันเทคโนโลยีเครือข่าย LAN แบบไร้สาย หรือ WLAN (Wireless LAN) กำลังได้รับความนิยมเป็นอย่างมาก เนื่องจากประโยชน์ของ WLAN มีอยู่มากมายโดยเฉพาะอย่างยิ่ง WLAN สร้างความสะดวกและอิสระในการใช้งานและติดตั้งเครือข่าย เทคโนโลยี WLAN ทำให้การเชื่อมต่ออุปกรณ์คอมพิวเตอร์ในบ้านหรือสำนักงานเข้าด้วยกันหรือต่อเข้ากับเครือข่ายไม่จำเป็นจะต้องใช้สายนำสัญญาณให้ยุ่งยากและดูเกะกะอีกต่อไป อุปกรณ์คอมพิวเตอร์ทั้งแบบตั้งโต๊ะและพกพาสามารถเชื่อมต่อถึงกันหรือเชื่อมต่อเข้ากับเครือข่ายจากตำแหน่งต่างๆ ที่อยู่ในรัศมีของสัญญาณได้อย่างอิสระ
เทคโนโลยีสำหรับการเชื่อมต่ออุปกรณ์ต่างๆ ผ่านสื่อไร้สายที่รู้จักกันมีอยู่หลายเทคโนโลยีเช่น Bluetooth , IEEE 802.11, IrDA , HiperLAN, HomeRF, และ GPRS เป็นต้น แต่เทคโนโลยีที่นิยมใช้กันอย่างแพร่หลายมากที่สุดสำหรับ WLAN คือเทคโนโลยีตามมาตรฐาน IEEE 802.11 เนื่องจากอุปกรณ์ IEEE 802.11 WLAN มีราคาไม่แพงนักและถูกลงเรื่อยๆ อีกทั้งมีสมรรถนะในการรับส่งข้อมูลค่อนข้างสูง ง่ายต่อการติดตั้งและใช้งาน IEEE 802.11 WLAN ได้รับความนิยมอย่างแพร่หลายมากขึ้นเรื่อยๆและมีแนวโน้มว่าในอนาคตอุปกรณ์คอมพิวเตอร์ต่างๆ จะมีอุปกรณ์ IEEE 802.11 WLAN ติดตั้งจากโรงงานหรือ Built-in มาด้วย
แต่อย่างไรก็ตาม ความง่ายและสะดวกต่อการติดตั้งและใช้งานของอุปกรณ์ IEEE 802.11 WLAN ก็นำมาซึ่งความไม่ปลอดภัยของเครือข่ายด้วยเช่นกัน อีกทั้งเทคโนโลยี IEEE 802.11 WLAN อยู่ในช่วงเริ่มต้นเท่านั้น (ยังไม่ถึงจุดสมบูรณ์และอิ่มตัว) ทำให้ยังมีช่องโหว่ด้านความปลอดภัยอีกมาก ดังนั้นผู้ที่เลือกใช้ IEEE 802.11 WLAN ควรมีความรู้เกี่ยวกับเทคโนโลยีและตระหนักถึงช่องโหว่ต่างๆรวมถึงการรักษาความปลอดภัยอย่างเหมาะสม ซึ่งบทความนี้จะกล่าวถึงความรู้เบื้องต้นเกี่ยวกับมาตรฐาน IEEE 802.11 รวมถึงช่องโหว่และการรักษาความปลอดภัยสำหรับเครือข่าย IEEE 802.11 WLAN
1. ความรู้เบื้องต้นเกี่ยวกับมาตรฐาน IEEE 802.11
มาตรฐาน IEEE 802.11 ซึ่งได้รับการตีพิมพ์ครั้งแรกเมื่อปีพ.ศ. 2540 โดย IEEE (The Institute of Electronics and Electrical Engineers) และเป็นเทคโนโลยีสำหรับ WLAN ที่นิยมใช้กันอย่างแพร่หลายมากที่สุด คือข้อกำหนด (Specfication) สำหรับอุปกรณ์ WLAN ในส่วนของ Physical (PHY) Layer และ Media Access Control (MAC) Layer โดยในส่วนของ PHY Layer มาตรฐาน IEEE 802.11 ได้กำหนดให้อุปกรณ์มีความสามารถในการรับส่งข้อมูลด้วยความเร็ว 1, 2, 5.5, 11 และ 54 Mbps โดยมีสื่อ 3 ประเภทให้เลือกใช้ได้แก่ คลื่นวิทยุที่ความถี่สาธารณะ 2.4 และ 5 GHz, และ อินฟราเรด (Infarred) (1 และ 2 Mbps เท่านั้น) สำหรับในส่วนของ MAC Layer มาตรฐาน IEEE 802.11 ได้กำหนดให้มีกลไกการทำงานที่เรียกว่า CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance) ซึ่งมีความคล้ายคลึงกับหลักการ CSMA/CD (Collision Detection) ของมาตรฐาน IEEE 802.3 Ethernet ซึ่งเป็นที่นิยมใช้กันทั่วไปในเครือข่าย LAN แบบใช้สายนำสัญญาณ นอกจากนี้ในมาตรฐาน IEEE802.11 ยังกำหนดให้มีทางเลือกสำหรับสร้างความปลอดภัยให้กับเครือข่าย IEEE 802.11 WLAN โดยกลไกการเข้ารหัสข้อมูล (Encryption) และการตรวจสอบผู้ใช้ (Authentication) ที่มีชื่อเรียกว่า WEP (Wired Equivalent Privacy) ด้วย
วิวัฒนาการของมาตรฐาน IEEE 802.11
มาตรฐาน IEEE 802.11 ได้รับการตีพิมพ์ครั้งแรกในปี พ.ศ. 2540 ซึ่งอุปกรณ์ตามมาตรฐานดังกล่าวจะมีความสามารถในการรับส่งข้อมูลด้วยความเร็ว 1 และ 2 Mbps ด้วยสื่อ อินฟราเรด (Infarred) หรือคลื่นวิทยุที่ความถี่ 2.4 GHz และมีกลไก WEP ซึ่งเป็นทางเลือกสำหรับสร้างความปลอดภัยให้กับเครือข่าย WLAN ได้ในระดับหนึ่ง เนื่องจากมาตรฐาน IEEE 802.11 เวอร์ชันแรกเริ่มมีประสิทธิภาพค่อนข้างต่ำและไม่มีการรองรับหลักการ Quality of Service (QoS) ซึ่งเป็นที่ต้องการของตลาด อีกทั้งกลไกรักษาความปลอดภัยที่ใช้ยังมีช่องโหว่อยู่มาก IEEE จึงได้จัดตั้งคณะทำงาน (Task Group) ขึ้นมาหลายชุดด้วยกันเพื่อทำการปรับปรุงเพิ่มเติมมาตรฐานให้มีศักยภาพสูงขึ้น โดยคณะทำงานกลุ่มที่มีผลงานที่น่าสนใจและเป็นที่รู้จักกันดีได้แก่ IEEE 802.11a, IEEE 802.11b, IEEE 802.11e, IEEE 802.11g, และ IEEE 802.11i
IEEE 802.11b
คณะทำงานชุด IEEE 802.11b ได้ตีพิมพ์มาตรฐานเพิ่มเติมนี้เมื่อปี พ.ศ. 2542 ซึ่งเป็นที่รู้จักกันดีและใช้งานกันอย่างแพร่หลายมากที่สุด มาตรฐาน IEEE 802.11b ใช้เทคโนโลยีที่เรียกว่า CCK (Complimentary Code Keying) ผนวกกับ DSSS (Direct Sequence Spread Spectrum) เพื่อปรับปรุงความสามารถของอุปกรณ์ให้รับส่งข้อมูลได้ด้วยความเร็วสูงสุดที่ 11 Mbps ผ่านคลื่นวิทยุความถี่ 2.4 GHz (เป็นย่านความถี่ที่เรียกว่า ISM (Industrial Scientific and Medical) ซึ่งถูกจัดสรรไว้อย่างสากลสำหรับการใช้งานอย่างสาธารณะด้านวิทยาศาสตร์ อุตสาหกรรม และการแพทย์ โดยอุปกรณ์ที่ใช้ความถี่ย่านนี้ก็เช่น IEEE 802.11, Bluetooth, โทรศัพท์ไร้สาย, และเตาไมโครเวฟ) ส่วนใหญ่แล้วอุปกรณ์ IEEE 802.11 WLAN ที่ใช้กันอยู่ในปัจจุบันจะเป็นอุปกรณ์ตามมาตรฐาน IEEE 802.11b นี้และใช้เครื่องหมายการค้าที่รู้จักกันดีในนาม Wi-Fi ซึ่งเครื่องหมายการค้าดังกล่าวถูกกำหนดขึ้นโดยสมาคม WECA (Wireless Ethernet Compatability Alliance) โดยอุปกรณ์ที่ได้รับเครื่องหมายการค้าดังกล่าวได้ผ่านการตรวจสอบแล้วว่าเป็นไปตามมาตรฐาน IEEE 802.11b และสามารถนำไปใช้งานร่วมกับอุปกรณ์ยี่ห้ออื่นๆที่ได้รับเครื่องหมาย Wi-Fi ได้
IEEE 802.11a
คณะทำงานชุด IEEE 802.11a ได้ตีพิมพ์มาตรฐานเพิ่มเติมนี้เมื่อปี พ.ศ. 2542 มาตรฐาน IEEE 802.11a ใช้เทคโนโลยีที่เรียกว่า OFDM (Orthogonal Frequency Division Multiplexing) เพื่อปรับปรุงความสามารถของอุปกรณ์ให้รับส่งข้อมูลได้ด้วยความเร็วสูงสุดที่ 54 Mbps แต่จะใช้คลื่นวิทยุที่ความถี่ 5 GHz ซึ่งเป็นย่านความถี่สาธารณะสำหรับใช้งานในประเทศสหรัฐอเมริกาที่มีสัญญาณรบกวนจากอุปกรณ์อื่นน้อยกว่าในย่านความถี่ 2.4 GHz อย่างไรก็ตามข้อเสียหนึ่งของมาตรฐาน IEEE 802.11a ที่ใช้คลื่นวิทยุที่ความถี่ 5 GHz ก็คือในบางประเทศย่านความถี่ดังกล่าวไม่สามารถนำมาใช้งานได้อย่างสาธารณะ ตัวอย่างเช่น ประเทศไทยไม่อนุญาตให้มีการใช้งานอุปกรณ์ IEEE 802.11a เนื่องจากความถี่ย่าน 5 GHz ได้ถูกจัดสรรสำหรับกิจการอื่นอยู่ก่อนแล้ว นอกจากนี้ข้อเสียอีกอย่างหนึ่งของอุปกรณ์ IEEE 802.11a WLAN ก็คือรัศมีของสัญญาณมีขนาดค่อนข้างสั้น (ประมาณ 30 เมตร ซึ่งสั้นกว่ารัศมีสัญญาณของอุปกรณ์ IEEE 802.11b WLAN ที่มีขนาดประมาณ 100 เมตร สำหรับการใช้งานภายในอาคาร) อีกทั้งอุปกรณ์ IEEE 802.11a WLAN ยังมีราคาสูงกว่า IEEE 802.11b WLAN ด้วย ดังนั้นอุปกรณ์ IEEE 802.11a WLAN จึงได้รับความนิยมน้อยกว่า IEEE 802.11b WLAN มาก
IEEE 802.11g
คณะทำงานชุด IEEE 802.11g ได้ใช้นำเทคโนโลยี OFDM มาประยุกต์ใช้ในช่องสัญญาณวิทยุความถี่ 2.4 GHz ซึ่งอุปกรณ์ IEEE 802.11g WLAN มีความสามารถในการรับส่งข้อมูลด้วยความเร็วสูงสุดที่ 54 Mbps ส่วนรัศมีสัญญาณของอุปกรณ์ IEEE 802.11g WLAN จะอยู่ระหว่างรัศมีสัญญาณของอุปกรณ์ IEEE 802.11a และ IEEE 802.11b เนื่องจากความถี่ 2.4 GHz เป็นย่านความถี่สาธารณะสากล อีกทั้งอุปกรณ์ IEEE 802.11g WLAN สามารถทำงานร่วมกับอุปกรณ์ IEEE 802.11b WLAN ได้ (backward-compatible) ดังนั้นจึงมีแนวโน้มสูงว่าอุปกรณ์ IEEE 802.11g WLAN จะได้รับความนิยมอย่างแพร่หลายหากมีราคาไม่แพงจนเกินไปและน่าจะมาแทนที่ IEEE 802.11b ในที่สุด ตามแผนการแล้วมาตรฐาน IEEE 802.11g จะได้รับการตีพิมพ์ประมาณช่วงกลางปี พ.ศ. 2546

วันจันทร์ที่ 1 กันยายน พ.ศ. 2551

เส้นใยแก้วนำแสง
ในอาคารบ้านเรือน ที่อยู่อาศัย สำนักงาน อาคารอุตสาหกรรมต่าง ๆ ล้วนแล้วแต่ต้องใช้สายสัญญาณเพื่อเชื่อมโยงระบบสื่อสาร แต่เดิมสายสัญญาณที่นำมาใช้ได้แก่สายตัวนำทองแดง
ปัจจุบันสายสัญญาณระบบสื่อสารมีความจำเป็นมากขึ้น โดยเฉพาะระบบการเชื่อมโยงเครือข่ายคอมพิวเตอร์ และมีแนวโน้มที่จะรวมระบบสื่อสารอย่างอื่นประกอบเข้ามาในระบบด้วย เช่น ระบบเคเบิลทีวี ระบบโทรศัพท์ ระบบการบริการข้อมูลข่าวสารเฉพาะของบริษัทผู้ให้บริการต่าง ๆ ความจำเป็นในลักษณะนี้จึงมีผู้ตั้งคำถามว่า ถึงเวลาแล้วหรือยังที่จะให้อาคารที่สร้างใหม่มีระบบเครือข่ายสายสัญญาณด้วยเส้นใยแก้วนำแสง
หากพิจารณาให้ดีพบว่า เวลานั้นได้มาถึงแล้ว ปัจจุบันราคาของเส้นใยแก้วนำแสงที่เดินในอาคารมีราคาใกล้เคียงกับสายยูทีพีแบบเกรดที่ดี เช่น แคต 5 ขณะเดี่ยวกันสายเส้นใยแก้วนำแสงให้ประสิทธิภาพที่สูงกว่ามากและรองรับการใช้งานในอนาคตได้มากกว่า
สายยูทีพีแบบแคต 5 รองรับความเร็วสัญญาณได้ 100 เมกะบิตต่อวินาที และมีข้อจำกัดในเรื่องความยาวเพียง 100 เมตร ขณะที่เส้นใยแก้วนำแสงรองรับความถี่สัญญาณได้หลายร้อยเมกะเฮิรตซ์ และยังใช้ได้กับความยาวถึง 2000 เมตร การพัฒนาในเรื่องต่าง ๆ ของเส้นใยแก้วนำแสงได้ก้าวมาถึงจุดที่จะนำมาใช้กันอย่างกว้างขวางแล้ว
จุดเด่นของเส้นใยแก้วนำแสง
จุดเด่นของเส้นใยแก้วนำแสงมีหลายประการ โดยเฉพาะจุดที่ได้เปรียบสายตัวนำทองแดง ที่จะนำมาใช้แทนตัวนำทองแดง จุดเด่นเหล่านี้มีการพัฒนามาอย่างต่อเนื่องและดีขึ้นเรื่อย ๆ ซึ่งประกอบด้วย
ความสามารถในการรับส่งข้อมูลข่าวสาร
เส้นใยแก้วนำแสงที่เป็นแท่งแก้วขนเหล็ก มีการโค้งงอได้ ขนาดเส้นผ่าศูนย์กลางที่ใช้กันมากคือ 62.5/125 ไมโครเมตร เส้นใยแก้วนำแสงขนาดนี้เป็นสายที่นำมาใช้ภายในอาคารทั่วไป เมื่อใช้กับคลื่นแสงความยาวคลื่น 850 นาโนเมตร จะส่งสัญญาณได้มากกว่า 160 เมกะเฮิรตซ์ ที่ความยาว 1 กิโลเมตร แล้วถ้าใช้ความยาวคลื่น 1300 นาโนเมตร จะส่งสัญญาณได้กว่า 500 นาโนเมตร ที่ความยาว 1 กิโลเมตร และถ้าลดความยาวเหลือ 100 เมตร จะใช้กับความถี่สัญญาณมากกว่า 1 กิกะเฮิรตซ์ ดังนั้นจึงดีกว่าสายยูทีพีแบบแคต 5 ที่ใช้กับสัญญาณได้ 100 เมกะเฮิรตซ์
กำลังสูญเสียต่ำ
เส้นใยแก้วนำแสงมีคุณสมบัติในเชิงการให้แสงวิ่งผ่านได้ การบั่นทอนแสงมีค่าค่อนค่างต่ำ ตามมาตรฐานของเส้นใยแก้วนำแสง การใช้เส้นสัญญาณนำแสงนี้ใช้ได้ยาวถึง 2000 เมตร หากระยะทางเกินกว่า 2000 เมตร ต้องใช้รีพีตเตอร์ทุก ๆ 2000 เมตร การสูญเสียในเรื่องสัญญาณจึงต่ำกว่าสายตัวนำทองแดงมาก ที่สายตัวนำทองแดงมีข้อกำหนดระยะทางเพียง 100 เมตร
หากพิจารณาในแง่ความถี่ที่ใช้ ผลตอบสนองทางความถึ่มีผลต่อกำลังสูญเสีย โดยเฉพาะในลวดตัวนำทองแดง เมื่อใช้เป็นสายสัญญาณ คุณสมบัติของสายตัวนำทองแดงจะเปลี่ยนแปลงเมื่อใช้ความถี่ต่างกัน โดยเฉพาะเมื่อใช้ความถึ่ของสัญญาณที่ส่งในตัวนำทองแดงสูงขึ้น อัตราการสูญเสียก็จะมากตามแต่กรณีของเส้นใยแก้วนำแสงเราใช้สัญญาณความถี่มอดูเลตไปกับแสง การเปลี่ยนสัญญาณรับส่งข้อมูลจึงไม่มีผลกับกำลังสูญเสียทางแสง
คลื่นแม่เหล็กไฟฟ้าไม่สามารถรบกวนได้
ปัญหาที่สำคัญของสายสัญญาแบบทองแดงคือการเหนี่ยวนำโดยคลื่นแม่เหล็กไฟฟ้า ปัญหานี้มีมาก ตั้งแต่เรื่องการรบกวนระหว่างตัวนำหรือเรียกว่าครอสทอร์ด การวมแบตซ์พอดีทางอิมพีแดนซ์ ทำให้มีคลื่นสะท้อนกลับ การรบกวนจากปัจจัยภายนอกที่เรียกว่า EMI ปัญหาเหล่านี้สร้างให้ผู้ใช้ต้องหมั่นดูแล
แต่สำหรับเส้นใยแก้วนำแสงแล้วปัญหาเรื่องเหล่านี้จะไม่มี เพราะแสงเป็นพลังงานที่มีพลังงานเฉพาะและไม่ถูกรบกวนของแสงจากภายนอก
น้ำหนักเบา
เส้นใยแก้วนำแสงมีน้ำหนักเบากว่าเส้นลวดตัวนำทองแดง น้ำหนักของเส้นใยแก้วนำแสงขนาด 2 แกนที่ใช้ทั่วไปมีน้ำหนักเพียงประมาณ 20 ถึง 50 เปอร์เซ็นต์ของสายยูทีพีแบบแคต 5
ขนาดเล็ก
เส้นใยแก้วนำแสงมีขนาดทางภาคตัดขวางแล้วเล็กกว่าลวดทองแดงมาก ขนาดของเส้นใยแก้วนำแสงเมื่อรวมวัสดุหุ้มแล้วมีขนาดเล็กกว่าสายยูทีพี โดยขนาดของสายใยแก้วนี้ใช้พื้นที่ประมาณ 15 เปอร์เซ็นต์ของเส้นลวดยูทีพีแบบแคต 5
มีความปลอดภัยในเรื่องข้อมูลสูงกว่า
การใช้เส้นใยแก้วนำแสงมีลักษณะใช้แสงเดินทางในข่าย จึงยากที่จะทำการแท๊ปหรือทำการตัดฟังข้อมูล
มีความปลอดภัยต่อชีวิตและทรัพย์สิน
การที่เส้นใยแก้วเป็นฉนวนทั้งหมด จึงไม่นำกระแสไฟฟ้า การลัดวงจร การเกิดอันตรายจากกระแสไฟฟ้าจึงไม่เกิดขึ้น
ความเข้าใจผิดบางประการ
แต่เดิมเส้นใยแก้วนำแสงมีใช้เฉพาะในโครงการใหญ่ หรือใช้เป็นเครือข่ายแบบแบ็กโบน เทคโนโลยีเกี่ยวกับเส้นใยแก้วนำแสงก็ยังไม่เป็นที่เปิดเผยมากนัก ทำให้เกิดความเข้าใจผิดบางประการเกี่ยวกับคุณสมบัติและการประยุกต์ใช้งาน
แตกหักได้ง่าย
ด้วยความคิดที่ว่า "แก้วแตกหักได้ง่าย" ความคิดนี้จึงเกิดขึ้นกับเส้นใยแก้วด้วย เพราะวัสดุที่ทำเป็นแก้ว ความเป็นจริงแล้วเส้นใยแก้วมีความแข็งแรงและทนทานสูงมาก การออกแบบใยแก้วมีเส้นใยห้อมล้อมไว้ ทำให้ทนแรงกระแทก นอกจากนี้แรงดึงในเส้นใยแก้วยังมีความทนทานสูงกว่าสายยูทีพี หากเปรียบเทียบเส้นใยแก้วกับสายยูทีพีแล้วจะพบว่า ข้อกำหนดของสายยูทีพีคุณสมบัติหลายอย่างต่ำกว่าเส้นใยแก้ว เช่น การดึงสาย การหักเลี้ยวเพราะลักษณะคุณสมบัติทางไฟฟ้าที่ความถี่สูงเปลี่ยนแปลงได้ง่ายกว่า
เส้นใยแก้วนำแสงมีราคาแพง
แนวโน้มทางด้านราคามีการเปลี่ยนแปลงราคาของเส้นใยแก้วนำแสงลดลง จนในขณะนี้ยังแพงกว่าสายยูทีพีอยู่บ้าง แต่ก็ไม่มากนักนอกจากนี้หลายคนยังเข้าใจว่า การติดตั้งเส้นใยแก้วนำแสงมีข้อยุ่งยาก และต้องใช้คนที่มีความรู้ความชำนาญ เสียค่าติตั้งแพง ความคิดนี้ก็คงไม่จริง เพราะการติดตั้งทำได้ไม่ยากนักเนื่องจากมีเครื่องมือพิเศษช่วยได้มาก เครื่องมือพิเศษนี้สามารถเข้าหัวสายได้โดยง่ายกว่าแต่เดิมมาก อีกทั้งราคาเครื่องมือก็ถูกลงจนมีผู้รับติดตั้งได้ทั่วไป
เส้นใยแก้วนำแสงยังไม่สามารถใช้กับเครื่องที่ตั้งโต๊ะได้
ปัจจุบันพีซีที่ใช้ส่วนใหญ่ต่อกับแลนแบบอีเทอร์เน็ต ซึ่งได้ความเร็ว 10 เมกะบิต การเชื่อมต่อกับแลนมีหลายมาตรฐาน โดยเฉพาะปัจจุบันหากใช้ความเร็วเกินกว่า 100 เมกะบิต สายยูทีพีรองรับไม่ได้ เช่น เอทีเอ็ม 155 เมกะบิต แนวโน้มของการใช้งานระบบเครือข่ายมีทางที่ต้องใช้แถบกว้างสูงขึ้นมาก โดยเฉพาะเมื่อต้องการให้พีซีเป็นมัลติมีเดียเพื่อแสดงผลเป็นภาพวิดีโอ การใช้เส้นใยแก้วนำแสงดูจะเป็นทางออก พัฒนาการของการ์ดก็ได้พัฒนาไปมากเอทีเอ็มการ์ดใช้ความเร็ว 155 เมกะบิต ย่อมต้องใช้เส้นใยแก้วนำแสงรองรับ การใช้เส้นใยแก้นำแสงยังสามารถใช้ในการส่งรับวิดีโอคอนเฟอเรนซ์ หรือสัญญาณประกอบอื่น ๆ ได้ดี
เส้นใยแก้วนำแสงมีกี่แบบ
คุณสมบัติของเส้นใยแก้วนำแสงแบ่งแยกได้ตามลักษณะคุณสมบัติของตัวนำแสงที่มีลักษณะการให้แสงส่องทะลุในลักษณะอย่างไร คุณสมบัติของแก้วนี้จะกระจายแสงออก ซึ่งในกรณีนี้การสะท้อนของแสงกลับต้องเกิดขึ้น โดยผนังแก้วด้านข้างต้องมีดัชนีหักเหของแสงที่ทำให้แสงสะท้อนกลับ เพื่อลดการสูญเสียของพลังงานแสง วิธีการนี้เราแบ่งแยกออกเป็นสองแบบคือ แบบซิงเกิลโหมด และมัลติโหมด
ซิงเกิลโหมด
เป็นการใช้ตัวนำแสงที่บีบลำแสงให้พุ่งตรงไปตามท่อแก้ว โดยมีการกระจายแสงออกทางด้านข้างน้อยที่สุด ซิงเกิลโหมดจึงเป็นเส้นใยแก้วนำแสงที่มีกำลังสูญเสียทางแสงน้อยที่สุด เหมาะสำหรับในการใช้กับระยะทางไกล ๆ การเดินสายใยแก้วนำแสงกับระยะทางไกลมาก เช่น เดินทางระหว่างประเทศ ระหว่างเมือง มักใช้แบบซิงเกิลโหมด

รูปที่ 1 เส้นใยแก้วนำแสงแบบซิงเกิลโหมด

มัลติโหมด
เป็นเส้นใยแก้วนำแสงที่มีลักษณะการกระจายแสงออกด้านข้างได้ ดังนั้นจึงต้องสร้างให้มีดัชนีหักเหของแสงกับอุปกรณ์ฉาบผิวที่สัมผัสกับเคล็ดดิงให้สะท้อนกลับหมด หากการให้ดัชนีหักเกของแสงมีลักษณะทำให้แสงเลี้ยวเบนทีละน้อยเราเรียกว่าแบบเกรดอินเด็กซ์ หากให้แสงสะท้อนดยไม่ปรับคุณสมบัติของแท่งแก้วให้แสงค่อยเลี้ยวเบนก็เรียกว่าแบบ สเต็ปอินเด็กซ์
เส้นใยแก้วนำแสงที่ใช้ในเครือข่ายแลน ส่วนใหญ่ใช้แบบมัลติโหมด โดยเป็นขนาด 62.5/125 ไมโครเมตร หมายถึงเส้นผ่าศูนย์กลางของท่อแก้ว 62.5 ไมโครเมตร และของแคล็ดดิงรวมท่อแก้ว 125 ไมโครเมตร
คุณสมบัติของเส้นใยแก้วนำแสงแบบสแต็ปอินเด็กซ์มีการสูญเสียสูงกว่าแบบเกรดอินเด็กซ์
รูปที่ 2 เส้นใยแก้วนำแสงแบบมัลติโหมด

ตัวส่งแสงและรับแสง
การใช้เส้นใยแก้วนำแสงจำเป็นต้องมีอุปกรณ์ที่ทำหน้าที่รับและส่งสัญญาณแสงอุปกรณ์ที่ทำหน้าที่ในการส่งสัญญาณแสงหรือเป็นแหล่งกำเนิดแสงคือ LED หรือเลเซอร์ไดโอด อุปกรณ์ส่งแสงนี้ทำหน้าที่เปลี่ยนคลื่นไฟฟ้าให้เป็นคลื่นแสง ส่วนอุปกรณ์รับแสงและเปลี่ยนกลับมาเป็นสัญญาณไฟฟ้า คือโฟโต้ไดโอด
อุปกรณ์ส่งแสงหรือ LED ใช้พลังงานเพียง 45 ไมโครวัตต์ สำหรับใช้กับเส้นใยแก้วนำแสงแบบ 62.5/125 การพิจารณาอุปกรณ์นี้ต้องดูที่แถบคลื่นแสง โดยปกติใช้คลื่นแสงย่านความยาวคลื่นประมาณ 830 ถึง 850 นาโนเมตร หรือมีแถบกว้างประมาณ 25-40 นาโนเมตร ดังนั้นข้อกำหนดเชิงพิกัดของเส้นใยแก้วนำแสงจึงกล่าวถึงความยาวคลื่นแสงที่ใช้ในย่าน 850 นาโนเมตร
ตัวรับแสงหรือโฟโต้ไดโอดเป็นอุปกรณ์ที่ใช้รับสัญญาณแสงและมีความไวต่อความเข้มแสง คลื่นแสงที่ส่งมามีการมอดูเลตสัญญาณข้อมูลเข้าไปร่วมด้วย
อุปกรณ์ตัวรับและตัวส่งแสงนี้มักทำมาสำเร็จเป็นโมดูล โดยเฉพาะเชื่อมต่อเข้ากับสัญญาณข้อมูลที่เป็นไฟฟ้าได้โดยตรง และทำให้สะดวกต่อการใช้งาน
รูปที่ 3 โครงสร้างของเส้นใยแก้วนำแสง
การเชื่อมต่อ และหัวต่อ
ที่ปลายสายแต่ละเส้นจะมีหัวต่อที่ใช้เชื่อมต่อกับเส้นใยแก้วนำแสง แสงจะผ่านหัวต่อไปยังอีกหัวต่อโดยเสมือนเชื่อมต่อกันเป็นเส้นเดียวได้
เมื่อเอาเส้นใยแก้วมาเข้าหัวที่ปลายแก้วจะมีลักษณะที่ส่งสัญญาณแสงออกมาได้ และต้องให้กำลังสูญเสียต่ำที่สุด ดังนั้นจึงมีวิธีที่จะทำให้ปลายท่อแก้วราบเรียบที่จะเชื่อมสัญญาณแสงต่อไปได้
ดังนั้นก่อนที่จะเข้าหัวต่อจึงต้องมีการฝนปลายท่อแก้ว วิธีการฝนปลายท่อแก้วนี้มีหลายวิธี เช่น การฝนแบบแบนราบ (Flat) การฝนแบบ PC และแบบ APC แต่ละแบบแสดงได้ดังรูปที่ 4
รูปที่4 การฝนปลายก่อนเข้าหัวสาย

การกระทำแต่ละแบบจะให้การลดทอนสัญญาณต่างกัน และยังต้องให้มีแสงสะท้อนกลับน้อยที่สุดเท่าที่จะน้อยได้ ลักษณะของหัวต่อเมื่อเชื่อมถึงกันแล้วจะต้องให้ผิวสัมผัสการส่งแสงทะลุถึงกัน เพื่อให้กำลังสูญเสียความเข้มแสงน้อยสุด โดยปกติหัวต่อที่ทำการฝนแก้วแบบแบนราบมีกำลังสูญเสียสูงกว่าแบบอื่น คือประมาณ -30 dB แบบ PC มีการสูญเสียประมาณ -40dB และแบบ APC มีการสูญเสียความเข้มน้อยสุดคือ -50 dB
ลักษณะของหัวต่อเมื่อเชื่อมต่อถึงกันแสดงดังรูปที่ 5
รูปที่ 5 เมื่อให้ปลายหัวต่อเชื่อมกันระหว่างแบบตัวผู้และตัวเมีย

การประยุกต์ใช้เส้นใยแก้วนำแสง
แนวโน้มการใช้งานเส้นใยแก้วนำแสงได้เป็นรูปธรรมที่เด่นชัดขึ้น ทั้งนี้เพราะมีผู้พัฒนาเทคโนโลยีให้รองรับกับการใช้เส้นใยแก้วนำแสง โดยเน้นที่ความเร็วของการรับส่งสัญญาณ เส้นใยแก้วนำแสงมีข้อเด่นในเรื่องความเชื่อถือสูง เพราะปราศจากการรบกวน อีกทั้งยังสามารถใช้กับเทคโนโลยีได้หลากหลายและรองรับสิ่งที่จะเกิดใหม่ในอนาคตได้มาก
รูปที่ 6 หัวต่อเส้นใยแก้วนำแสงแบบ ST

ตัวอย่างการใช้งานต่อไปนี้เป็นรูปแบบให้เห็นตัวอย่างของการประยุกต์ใช้ในอาคารในสำนักงาน โดยสามารถเดินสายสัญญาณด้วยเส้นใยแก้นำแสงตามมาตรฐานสากล คือมีสายในแนวดิ่ง และสายในแนวราบ สายในแนวดิ่งเชื่อมโยงระหว่างชั้น ส่วนสายในแนวราบเป็นการเชื่อมจากผู้ใช้มาที่ชุมสายแต่ละชั้น
รูปแบบไดอะแกรมการเดินสายทั่วไปประกอบด้วยโครงสร้างดังรูปที่ 7
รูปที่ 7 โครงสร้างการเดินสายสัญญาณตามมาตรฐาน EIA 568

จากลักษณะของการเดินสายตามมาตรฐาน EIA 586 นี้ สามารถนำมาใช้กับเทคโนโลยีต่าง ๆ ได้มาก เช่น การใช้เทคโนโลยี 10BASE F
การใช้อีเธอร์เน็ตแบบ 10BASE F เป็นมาตรฐานที่ออกแบบมาให้ใช้แบบเทคโนโลยีอีเธอร์เน็ตโดยตรง ความเร็วสัญญาณยังคงอยู่ที่ 10 เมกะบิต และหากเป็น 10BASE F ก็เป็นความเร็ว 10 เมกะบิต ขณะนี้มีการพัฒนาระบบอีเธอร์เน็ตให้เป็นแบบกิกะบิตอีเธอร์เน็ต หรือความเร็วสัญญาณอยู่ที่ 1,000 เมกะบิต การเดินสายด้วยเส้นใยแก้วนำแสงมีลักษณะเหมือนกับสายยูทีพี โดยใช้ชิปเป็นตัวกระจายพอร์ตต่าง ๆ ดังแสดงในรูปที่ 8
รูปที่ 8 โครงสร้างการเดินสายสัญญาณเพื่อใช้กับเส้นใยแก้วนำแสง
FDDI
เทคโนโลยีนี้มีใช้มานานแล้ว เป็นเทคโนโลยีที่มีความเร็วของสัญญาณที่ 100 เมกะบิต และใช้สายสัญญาณเป็นเส้นใยแก้วนำแสง มีโครงสร้างเป็นวงแหวนสองชั้นและแตกกระจายออก การเดินสายสัญญาณตามมาตรฐาน EIA 568 ก็จัดให้เข้ากับ FDDI ได้ง่าย FDDI มีข้อดีคือสามารถเชื่อมโยงเครือข่ายระยะไกลได้ มีจำนวนโหนดบน FDDI ได้ถึง 1,000 โหนด การจัดโครงสร้างต่าง ๆ ของ FDDI สามารถทำผ่านทางแบตซ์ที่เชื่อมต่อให้ได้รูปตามที่ FDDI ต้องการ ในลูปวงแหวนหลักของ FDDI ต้องการวงแหวนสองชั้น ซึ่งก็ต้องใช้เส้นใยแก้วนำแสงจำนวนทั้งหมด 4 ลำแสง FDDI ยังเป็นเครือข่ายหลักหรือแบ็กโบนเพื่อเชื่อมต่อไปยังเครือข่ายอื่นได้ เช่น เชื่อมต่อกับอีเธอร์เน็ต กับโทเคนริง ไดอะแกรมของ FDDI แสดงดังรูปที่ 9
รูปที่ 9 ไดอะแกรมการเชื่อมโยงของ FDDI
ATM
เป็นเทคโนโลยีที่พัฒนามาเพื่อรองรับการใช้งานที่ความเร็วสูงมาก เอทีเอ็มสามารถใช้ได้กับความเร็ว 155 เมกะบิต 622 เมกะบิต และสูงเกินกว่ากิกะบิตในอนาคต โครงสร้างการเดินสายเอทีเอ็มมีลักษณะแบบดาว เป็นโครงสร้างการกระจายสายสัญญาณซึ่งตรงกับสภาพการใช้เส้นใยแก้วนำแสงอยู่แล้ว
ลักษณะของแพตช์และการกระจายสายสัญญาณเพื่อใช้กับเส้นใยแก้วนำแสงในลักษณะที่ปรับเปลี่ยนเข้ากับเทคโนโลยีต่าง ๆ ได้แสดงไว้ในรูปที่ 10 การวางโครงสร้างของสายสัญญาณเส้นใยแก้วจึงไม่แตกต่างกับสายยูทีพี
รูปที่ 10 การวางโครงสร้างสายเพื่อเชื่อมต่อเข้ากับอุปกรณ์ต่าง ๆ
อนาคตต้องเป็นเส้นใยแก้วนำแสง
ถึงแม้ว่าเทคโนโลยีในปัจจุบันมีการใช้งานสายยูทีพีอย่างแพร่หลายและได้ประโยชน์มหาศาสล แต่จากการพัฒนาเทคโนโลยีที่ต้องการให้ถนนของข้อมูลข่าวสารเป็นถนนขนาดใหญ่ที่เรียกว่าซูเปอร์ไฮเวย์ การรองรับข้อมูลจำนวนมากและการประยุกต์ในรูปแบบมัลติมีเดียที่กำลังจะเกิดขึ้นย่อมต้องทำให้สภาพการใช้ข้อมูลข่าวสารต้องพัฒนาให้รองรับกับจำนวนปริมาณข้อมูลที่จะมีมากขึ้น
จึงเชื่อแน่ว่า เส้นใยแก้วนำแสงจะเป็นสายสัญญาณที่ก้าวเข้ามาในยุคต่อไป และจะมีบทบาทเพิ่มสูงขึ้น ซึ่งเมื่อถึงเวลานั้นแล้วเราคงจะได้เห็นอาคารบ้านเรือน สำนักงาน หรือโรงงาน มีเส้นใยแก้วนำแสงเดินกระจายกันทั่วเหมือนกับที่เห็นสายไฟฟ้ากำลังอยู่ในขณะนี้และเหตุการณ์เหล่านี้คงจะเกิดขึ้นในอีกไม่นานัก

วันอังคารที่ 5 สิงหาคม พ.ศ. 2551

ข้อสอบ

1. Router มีกี่โหมด อะไรบ้าง อธิบายให้ละเอียด
ตอบ1. Router มีกี่โหมด อะไรบ้างRouting มีอยู่ 2 แบบ หลักๆ ได้แก่- แบบสเตติก (Static Route)- แบบไดนามิก (Dynamic Route)Static คือการเลือกเส้นทางแบบ Static นี้ การกำหนดเส้นทางการคำนวณเส้นทางทั้งหมด กระทำโดยผู้บริหาจัดการเครือข่าย ค่าที่ถูกป้อนเข้าไปในตารางเลือกเส้นทางนี้มีค่าที่ตายตัว ดังนั้นการเปลี่ยนแปลงที่เกิดขึ้นใดๆ บนเครือข่าย จะต้องให้ผู้บริหารจัดการดูแล เครือข่า เข้ามาจัดการทั้งสิ้น อย่างไรก็ดีการใช้ วิธีการทาง Static เช่นนี้ มีประโยชน์เหมาะสำหรับสภาพแวดล้อมดังนี้-เหมาะสำหรับเครือข่ายที่มีขนาดเล็ก-เพื่อผลแห่งการรักษาความปลอดภัยข้อมูล เนื่องจากสามารถแน่ใจว่า ข้อมูลข่าวสารจะต้องวิ่งไปบนเส้นทางที่กำหนดไว้ให้ ตายตัว-ไม่ต้องใช้ Software เลือกเส้นทางใดๆทั้งสิ้น-ช่วยประหยัดการใช้ แบนวิดท์ของเครือข่ายลงได้มาก เนื่องจากไม่มีปัญหาการ Broadcast หรือแลกเปลี่ยนข้อมูลระหว่าง Router ที่มาจากการใช้โปรโตคอลเลือกเส้นทางการจัดตั้ง Configuration สำหรับการเลือกเส้นทางแบบ Staticเป็นที่ทราบดีแล้วว่า การเลือกเส้นทางแบบ Static เป็นลักษณะการเลือกเส้นทางที่ถูกกำหนดโดยผู้จัดการเครือข่าย เพื่อกำหนดเส้นทางการเดินทางของข้อมูลที่ตายตัว หรือเจาะจงเส้นทางปกติ Router สามารถ Forward Packet ไปข้างหน้า บนเส้นทางที่มันรู้จักเท่านั้น ดังนั้นการกำหนดเส้นทางเดินของแพ็กเก็ตให้กับ Router จึงควรให้ความระมัดระวังวิธีการจัด Configure แบบ Static Route ให้กับ Router Cisco ให้ใส่คำสั่ง ip route ลงไปที่ Global Configuration Mode มีตัวอย่างการใช้คำสั่ง ดังนี้ip route network [ mask ] {address interface} [distance] [permanent]-Network เครือข่าย หรือ Subnet ปลายทาง-Mask หมายถึงค่า Subnet mask-Address IP Address ของ Router ใน Hop ต่อไป-Interface ชื่อของ Interface ที่ใช้เพื่อเข้าถึงที่หมายปลายทาง-Distance หมายถึง Administrative Distance-Permanent เป็น Option ถูกใช้เพื่อกำหนด เส้นทางที่ตั้งใจว่าจะไม่มีวันถอดถอนทิ้ง ถึงแม้ว่า จะปิดการใช้งาน Interface ก็ตามdynamic คือExterior Gateway Routing ProtocolDistance Vector Routing ProtocolLink State Routing Protocolเนื่องจาก จุดประสงค์ของการเขียนบทความนี้ ก็เพื่อให้ท่านผู้อ่านมีแนวคิดในการจัดตั้งเครือข่ายและอุปกรณ์ Router เพื่อเชื่อมต่อกันระหว่างเครือข่าย และเนื่องจากขอบข่ายของหลักวิชาการด้านนี้ ค่อนข้างกว้าง จึงขอตีกรอบให้แคบลง โดยจะขอกล่าวถึงรายละเอียดเพียงบางส่วนในการจัดตั้ง Router ที่ท่านสามารถนำไปใช้ได้ รู้จักกับ Distance Vector Routing Protocol Distance Vector เป็นโปรโตคอลเลือกเส้นทางที่ Router ใช้เพื่อการสร้างตาราง Routing และจัดการนำแพ็กเก็ต ส่งออก ไปยังเส้นทางที่กำหนด โดย อาศัยข้อมูลเกี่ยวกับระยะทาง เช่น Hop เป็นตัวกำหนดว่า เส้นทางใดเป็นเส้นทางที่ดีที่สุด ที่จะนำแพ็กเก็ตส่งออกไปที่ปลายทาง โดยถือว่า ระยะทางที่ใกล้ที่สุด เป็นเส้นทางที่ดีที่สุด และแอดเดรส ของเครือข่ายปลายทางเป็น VectorDistance Vector บางครั้งจะถูกเรียกว่า "Bellman-Ford Algorithm" ซึ่งโปรโตคอลนี้ จะทำให้ Router แต่ละตัว ที่อยู่บนเครือข่ายจะต้องเรียนรู้ลักษณะของ Network Topology โดยการแลกเปลี่ยน Routing Information ของตัวมันเอง กับ Router ที่เชื่อมต่อกันเป็นเพื่อนบ้าน โดยตัว Router เองจะต้องทำการจัดสร้างตารางการเลือกเส้นทางขึ้นมา โดยเอาข้อมูล ข่าวสารที่ได้รับจากเครือข่ายที่เชื่อมต่อกับมันโดยตรง ( ข้อมูลนี้ครอบคลุมไปถึงระยะทางระหว่าง Router ที่เชื่อมต่อกัน)หลักการทำงานได้แก่การที่ Router จะส่งชุด สำเนาที่เป็น Routing Information ชนิดเต็มขั้นของมันไปยัง Router ตัวอื่นๆ ที่เชื่อมต่ออยู่กับมันโดยตรง ด้วยการแลกเปลี่ยน Routing Information กับ Router ตัวอื่นๆ ที่เชื่อมต่อกับมันโดยตรงนี้เอง ทำให้ Router แต่ละตัว จะรู้จักซึ่งกันและกัน หรือรู้เขารู้เรา กระบวนการแลกเปลี่ยนนี้ จะดำเนินต่อไปเป็นห้วงๆ ของเวลาที่แน่นอนDistance Vector Algorithm ค่อนข้างเป็นแบบที่เรียบง่าย อีกทั้งออกแบบเครือข่ายได้ง่ายเช่นกัน ปัญหาหลักของของ Distance Vector Algorithm ได้แก่ การคำนวณเส้นทาง จะซับซ้อนขึ้น เมื่อขนาดของเครือข่ายโตขึ้นตัวอย่างของโปรโตคอลที่ทำงานภายใต้ Distance Vector Algorithm ได้แก่ อาร์ไอพี (RIP) หรือ Routing Information ProtocolLink State RoutingLink State Routing ถูกเรียกว่า "Shortest Path First (SPF)" Algorithm ด้วย Link State Routing นี้ Router แต่ละตัวจะทำการ Broadcast ข้อมูลข่าวสารออกมายัง Router ที่เชื่อมต่อกับมันโดยตรงแบบเป็นระยะๆ ข้อมูลข่าวสารนี้ยังครอบคลุมไป ถึงสถานะของการเชื่อมต่อระหว่างกันด้วยวิธีการของ Link State นี้ Router แต่ละตัวจะทำการสร้างผังที่สมบูรณ์ของเครือข่ายขึ้น จากข้อมูลที่มันได้รับจาก Router อื่นๆทั้งหมด จากนั้นจะนำมาทำการคำนวณเส้นทางจากผังนี้โดยใช้ Algorithm ที่เรียกว่า Dijkstra Shortest Path AlgorithmRouter จะเฝ้าตรวจสอบดูสถานะของการเชื่อมต่ออย่างต่อเนื่อง โดยการแลกเปลี่ยนระหว่างแพ็กเก็ตกับ Router เพื่อนบ้าน แต่หาก Router ไม่ตอบสนองต่อความพยายามที่จะติดต่อด้วย หลายๆครั้ง การเชื่อมต่อก็จะถือว่าตัดขาดลง แต่ถ้าหากสถานะ ของ Router หรือการเชื่อมต่อเกิดการเปลี่ยนแปลง ข้อมูลข่าวสารนี้จะถูก Broadcast ไปยัง Router ทั้งหมดที่อยู่ในเครือข่ายการจัดตั้ง Configure ให้กับวิธี การจัดเลือกเส้นทางแบบ Dynamicในการจัดตั้งค่าสำหรับการเลือกเส้นทาง (Routing) แบบ Dynamic จะมี 2 คำสั่งสำหรับการใช้งาน ได้แก่ คำสั่ง Router และ Network โดยคำสั่ง Router เป็นคำสั่งที่ทำให้เริ่มต้นการเกิดกระบวนการเลือกเส้นทางขึ้น รูปแบบของคำสั่งมีดังนี้Router (config)#router protocol [keyword]ต่อไปนี้เป็นคำอธิบายรายละเอียดของรูปแบบคำสั่งProtocol เป็นโปรโตคอลเลือกเส้นทางแบบใดแบบหนึ่ง ระหว่าง RIP IGRP OSPF หรือ Enhanced IGRPKeyword ตัวอย่าง เช่น เลขหมายของ Autonomous ซึ่งจะถูกนำมาใช้กับโปรโตคอลที่ต้องการระบบ Autonomous ได้แก่ โปรโตคอล IGRPคำสั่ง Network ก็เป็นคำสั่งที่มีความจำเป็นต่อการใช้งานเช่นกัน เนื่องจากมันสามารถกำหนดว่า Interface ใดที่จะเกี่ยวข้องกับการรับหรือส่ง Packet เพื่อการ Update ตารางเลือกเส้นทาง ขณะเกิดกระบวนการเลือกเส้นทางขึ้นคำสั่ง Network จะเป็นคำสั่งที่ทำให้ โปรโตคอลเลือกเส้นทางเริ่มต้นทำงานบน Interface ต่างๆ ของ Router อีกทั้งยังทำให้ Router สามารถโฆษณาประชาสัมพันธ์เครือข่ายที่ตนดูแลอยู่ ได้อีกด้วย รูปแบบของคำสั่งมีดังนี้Router (config-router)#network network- numberNetwork-number ในที่นี้หมายถึง เครือข่ายที่เชื่อมต่อกันโดยตรง และ Network Number จะต้องอยู่ในมาตรฐาน เลขหมาย ของ INTERNIC8.protocol ที่เลือกเส้นทางแบบ dynamic มีอะไรบ้างตอบ โปรโตคอลเลือกเส้นทางแบบ Dynamic มีอยู่ หลายรูปแบบ ดังนี้1. Interior Gateway Routing Protocol2.Exterior Gateway Routing Protocol3. Distance Vector Routing Protocol4. Link State Routing ProtocolInterior เป็น Protocol ที่ใช้แลกเปลี่ยนฐานความรู้ระหว่าง Roter ภายในองค์กรเดียวกัน ซึ่งได้แก่ RIP , IGRP ,EIGRP และ OSPF Exterior เป็น Protocol ที่ใช้แลกเปลี่ยนฐานความรู้ต่างองค์กรกันหรือความน่าเชื่อถือต่างกัน ซึ่งได้แก่ BGP, EGP Distance Vector เป็นโปรโตคอลเลือกเส้นทางที่ Router ใช้เพื่อการสร้างตาราง Routing และจัดการนำแพ็กเก็ตส่งออกไปยังเส้นทางที่กำหนด โดย อาศัยข้อมูลเกี่ยวกับระยะทาง เช่น Hop เป็นตัวกำหนดว่า เส้นทางใดเป็นเส้นทางที่ดีที่สุด ที่จะนำแพ็กเก็ตส่งออกไปที่ปลายทาง โดยถือว่า ระยะทางที่ใกล้ที่สุด เป็นเส้นทางที่ดีที่สุด และแอดเดรส ของเครือข่ายปลายทางเป็น VectorLink State Routing ถูกเรียกว่า "Shortest Path First (SPF)" Algorithm ด้วย Link State Routing นี้ Router แต่ละตัวจะทำการ Broadcast ข้อมูลข่าวสารออกมายัง Router ที่เชื่อมต่อกับมันโดยตรงแบบเป็นระยะๆ ข้อมูลข่าวสารนี้ยังครอบคลุมไปถึงสถานะของการเชื่อมต่อระหว่างกันRouting Protocols (เส้นทางการเชื่อมต่อ)Exterior routing Protocol (EGP) เป็นโปรโตคอล สำหรับการแลกเปลี่ยนข้อมูลของ router ระหว่าง 2 เครือข่ายของ gateway host ในระบบเครือข่ายแบบอัตโนมัติ ซึ่ง EGP มีการใช้โดยทั่วไป ระหว่าง host บนอินเตอร์เน็ต เพื่อแลกเปลี่ยนสารสนเทศของตาราง routing โดยตาราง routing ประกอบด้วยรายการ router ตำแหน่งที่ตั้ง และเมทริกของค่าใช้จ่ายของแต่ละ router เพื่อทำให้สามารถเลือกเส้นทางที่ดีที่สุด กลุ่มของ router แต่ละกลุ่มจะใช้เวลาภายใน 120 วินาที ถึง 480 วินาที ในการส่งข้อมูลส่งตาราง routing ทั้งหมดไปยังเครือข่ายอื่น ซึ่ง EGP -2 เป็นเวอร์ชันล่าสุดของ EGP Border Gateway Protocol (BGP) เป็นโปรโตคอลสำหรับการแลกเปลี่ยนข้อมูลของเส้นทางระหว่าง gateway host (ซึ่งแต่ละที่จะมี router ของตัวเอง) ในเครือข่ายแบบอัตโนมัติ BGP มักจะได้รับการใช้ระหว่าง gateway host บนระบบอินเตอร์เน็ต ตาราง routing ประกอบด้วยรายการของ router ตำแหน่งและตารางค่าใช้จ่าย (cost metric) ของเส้นทางไปยังrouterแต่ละตัวเพื่อการเลือกเส้นทางที่ดีที่สุด host ที่ใช้การติดต่อด้วยประเภทของ Routing ภายใน Network ที่เชื่อมต่อกับเนตเวิคโดยตรงRouting Information Protocol (RIP) เป็นโปรโตคอลที่ใช้อย่างกว้างขวาง สำหรับการจัดการสารสนเทศของ router ภายในเครือข่าย เช่น เครือข่าย LAN ของบริษัท หรือการติดต่อภายในกลุ่ม ของเครือข่าย RIP ได้รับการจัดชั้นโดย Internet Engineering Task Force (IETF) ให้เป็นหนึ่งในโปรโตคอลของInternet Gateway Protocol (หรือ InteriorGatewayProtocol)Open Shortest Path First (OSPF) ถือเป็น เร้าติ้งโปรโตคอล (Routing Protocol) ตัวหนึ่งที่นิยมใช้กันอย่างแพร่หลายมากที่สุดในระบบเน็ตเวิร์ก เนื่องจากมีจุดเด่นในหลายด้าน เช่น การที่ตัวมันเป็น Routing Protocol แบบ Link State, การที่มีอัลกอรึทึมในการค้นหาเส้นทางด้วยตัวเอง ซึ่งเปรียบเสมือนว่า ตัวของ เราเตอร์ที่รัน OSPF ทุกตัวเป็นรูท (Root) หรือ จุดเริ่มต้นของระบบไปยังกิ่งย่อยๆ หรือโหนด (Node) ต่างๆ ซึ่งเป็นเทคนิคในการลดเส้นทางที่วนลูป (Routing Loop) ของการ Routing ได้เป็นอย่างดีEnhance Interior Gateway Routing Protocol (EIGRP) นั้นถือได้ว่าเป็น เราติ้งโปรโตคอลที่มีความรวดเร็วสูงสุดของซิสโก้ในการค้นหาเส้นทางภายใน Intra-AS (Interior Routing Protocol: เราติ้งโปรโตคอลภายใน Autonomous System) ซึ่ง ในเราติ้งโปรโตคอลแบบ EIGRP นี้ จะเป็นการนำเอาข้อดีของการเราติ้งแบบ Distance Vector และ Link State มาผสมผสานกัน (ในหนังสือบางเล่มจะเรียก เราติ้งโปรโตคอลแบบนี้ว่า “Hybrid” (ลูกผสม) หรือ Advanced Distance Vector)
2.จงบอกคำสั่งในแต่ละโหมดมาอย่างน้อย 5 คำสั่ง
ตอบ คำสั่ง access-enableเป็นการสร้าง Access List entry ชั่วคราวclearเป็นการ reset ค่า configure ต่างๆที่ท่านสร้างขึ้นชั่วคราวconnectใช้เพื่อ เปิด connection กับ terminaldisableปิดหรือยกเลิกคำสั่งที่อยู่ใน Privileged modedisconnectยกเลิกการเชื่อมต่อใดๆกับ networkenableเข้าสู่ privileged Exec modeexitออกจากการใช้ User Exec modehelpใช้เพื่อแสดงรายการ helplatเปิดการเชื่อมต่อกับ LAT (เครือข่าย VAX)lockใช้เพื่อ lock terminalloginloginเข้ามาเป็น userlogoutexit ออกจาก EXECmrinfoใช้เพื่อการร้องขอข้อมูลข่าวสารเกี่ยวกับ Version และสถานะของ Router เพื่อนบ้านจาก multicast router ตัวหนึ่งmstatแสดงสถิติหลังจากที่ได้ตามรอยเส้นทางแบบ Multicast ของ Router แล้วmtraceใช้ติดตามดู เส้นทาง Multicast แบบย้อนกลับจาก ปลายทางย้อนกลับมาที่ต้นทางname-connectionเป็นการให้ชื่อกับ การเชื่อมต่อของเครือข่ายที่กำลังดำเนินอยู่padเปิดการเชื่อมต่อ X.25 ด้วย X.29 PADPingใช้เพื่อทดสอบการเชื่อมต่อpppใช้เรียกการเชื่อมต่อแบบ PPPresumeใช้เพื่อการ กลับเข้าสู่การเชื่อมต่อของเครือข่ายอีกครั้งrloginเปิดการเชื่อมต่อ remote Login กับ Server ระยะไกลshowแสดงข้อมูลข่าวสารเกี่ยวกับการทำงานของ Router ในปัจจุบันslipเริ่มการใช้งาน Slip (serial line protocol)systatเป็นการแสดงข้อมูลข่าวสารเกี่ยวกับ Terminal Line เช่นสถานะของระบบtelnetเป็นการเปิด การเชื่อมต่อทาง Telnetterminalเป็นการจัด Parameter ของ Terminal Linetracerouteเป็นการใช้ Traceroute เพื่อการติดตามไปดู ระบบที่อยู่ปลายทางtunnelเปิดการเชื่อมต่อแบบ Tunnelwhereแสดงรายการ ของ Link ที่กำลัง Active ในปัจจุบัน
3. Command prompt ในโหมดต่างๆ
ตอบ Command Mode Command Mode หลักภายใน Cisco IOS ได้แก่User Exec ModePrivileged Exec ModeGlobal Configuration ModeInterface ConfigurationBoot Mode
4. Use exec mode พร้อมรายละเอียด
ตอบ Command Mode หลักภายใน Cisco IOS ได้แก่User Exec ModePrivileged Exec ModeGlobal Configuration ModeInterface ConfigurationBoot ModeUser Exec ModeUser Exec Mode เป็นโหมดแรกที่ท่านจะต้อง Enter เข้าไป เมื่อRouter เริ่มทำงาน วิธีที่จะรู้ว่าท่านได้เข้าสู่ User Exec Mode จาก Prompt ของ Router ได้แก่ Prompt ที่แสดงบนหน้าจอ ได้แก่ ชื่อของ Router แล้วตามด้วยเครื่องหมาย > เช่นRouterhostname >
5.คำสั่งที่ใช้ตรวจสอบสถานะของRout จงบอกอย่างน้อย 5 คำสั่ง
ตอบ show versions , show clock , show startup-config , show interfaces , enable , configure terminal
6. การเลือกเส้นทางแบบ Static คืออะไร
ตอบ การเลือกเส้นทางแบบ Static นี้ การกำหนดเส้นทางการคำนวณเส้นทางทั้งหมด กระทำโดยผู้บริหาจัดการเครือข่าย ค่าที่ถูกป้อนเข้าไปในตารางเลือกเส้นทางนี้มีค่าที่ตายตัว ดังนั้นการเปลี่ยนแปลงที่เกิดขึ้นใดๆ บนเครือข่าย จะต้องให้ผู้บริหารจัดการดูแล เครือข่า เข้ามาจัดการทั้งสิ้น อย่างไรก็ดีการใช้ วิธีการทาง Static เช่นนี้ มีประโยชน์เหมาะสำหรับสภาพแวดล้อมดังนี้-เหมาะสำหรับเครือข่ายที่มีขนาดเล็ก-เพื่อผลแห่งการรักษาความปลอดภัยข้อมูล เนื่องจากสามารถแน่ใจว่า ข้อมูลข่าวสารจะต้องวิ่งไปบนเส้นทางที่กำหนดไว้ให้ ตายตัว-ไม่ต้องใช้ Software เลือกเส้นทางใดๆทั้งสิ้น-ช่วยประหยัดการใช้ แบนวิดท์ของเครือข่ายลงได้มาก เนื่องจากไม่มีปัญหาการ Broadcast หรือแลกเปลี่ยนข้อมูลระหว่าง Router ที่มาจากการใช้โปรโตคอลเลือกเส้นทางการจัดตั้ง Configuration สำหรับการเลือกเส้นทางแบบ Staticเป็นที่ทราบดีแล้วว่า การเลือกเส้นทางแบบ Static เป็นลักษณะการเลือกเส้นทางที่ถูกกำหนดโดยผู้จัดการเครือข่าย เพื่อกำหนดเส้นทางการเดินทางของข้อมูลที่ตายตัว หรือเจาะจงเส้นทางปกติ Router สามารถ Forward Packet ไปข้างหน้า บนเส้นทางที่มันรู้จักเท่านั้น ดังนั้นการกำหนดเส้นทางเดินของแพ็กเก็ตให้กับ Router จึงควรให้ความระมัดระวังวิธีการจัด Configure แบบ Static Route ให้กับ Router Cisco ให้ใส่คำสั่ง ip route ลงไปที่ Global Configuration Mode มีตัวอย่างการใช้คำสั่ง ดังนี้ip route network [ mask ] {address interface} [distance] [permanent]-Network เครือข่าย หรือ Subnet ปลายทาง-Mask หมายถึงค่า Subnet mask-Address IP Address ของ Router ใน Hop ต่อไป-Interface ชื่อของ Interface ที่ใช้เพื่อเข้าถึงที่หมายปลายทาง-Distance หมายถึง Administrative Distance-Permanent เป็น Option ถูกใช้เพื่อกำหนด เส้นทางที่ตั้งใจว่าจะไม่มีวันถอดถอนทิ้ง ถึงแม้ว่า จะปิดการใช้งาน Interface ก็ตาม
7. การเลือกเส้นทางแบบ Dynamicคืออะไร
ตอบ dynamic : ประเภทของโปรโตคอลเลือกเส้นทางแบบ Dynamicโปรโตคอลเลือกเส้นทางแบบ Dynamic มีอยู่ หลายรูปแบบ ดังนี้Exterior Gateway Routing ProtocolDistance Vector Routing ProtocolLink State Routing Protocolเนื่องจาก จุดประสงค์ของการเขียนบทความนี้ ก็เพื่อให้ท่านผู้อ่านมีแนวคิดในการจัดตั้งเครือข่ายและอุปกรณ์ Router เพื่อเชื่อมต่อกันระหว่างเครือข่าย และเนื่องจากขอบข่ายของหลักวิชาการด้านนี้ ค่อนข้างกว้าง จึงขอตีกรอบให้แคบลง โดยจะขอกล่าวถึงรายละเอียดเพียงบางส่วนในการจัดตั้ง Router ที่ท่านสามารถนำไปใช้ได้ รู้จักกับ Distance Vector Routing Protocol Distance Vector เป็นโปรโตคอลเลือกเส้นทางที่ Router ใช้เพื่อการสร้างตาราง Routing และจัดการนำแพ็กเก็ต ส่งออก ไปยังเส้นทางที่กำหนด โดย อาศัยข้อมูลเกี่ยวกับระยะทาง เช่น Hop เป็นตัวกำหนดว่า เส้นทางใดเป็นเส้นทางที่ดีที่สุด ที่จะนำแพ็กเก็ตส่งออกไปที่ปลายทาง โดยถือว่า ระยะทางที่ใกล้ที่สุด เป็นเส้นทางที่ดีที่สุด และแอดเดรส ของเครือข่ายปลายทางเป็น VectorDistance Vector บางครั้งจะถูกเรียกว่า "Bellman-Ford Algorithm" ซึ่งโปรโตคอลนี้ จะทำให้ Router แต่ละตัว ที่อยู่บนเครือข่ายจะต้องเรียนรู้ลักษณะของ Network Topology โดยการแลกเปลี่ยน Routing Information ของตัวมันเอง กับ Router ที่เชื่อมต่อกันเป็นเพื่อนบ้าน โดยตัว Router เองจะต้องทำการจัดสร้างตารางการเลือกเส้นทางขึ้นมา โดยเอาข้อมูล ข่าวสารที่ได้รับจากเครือข่ายที่เชื่อมต่อกับมันโดยตรง ( ข้อมูลนี้ครอบคลุมไปถึงระยะทางระหว่าง Router ที่เชื่อมต่อกัน)หลักการทำงานได้แก่การที่ Router จะส่งชุด สำเนาที่เป็น Routing Information ชนิดเต็มขั้นของมันไปยัง Router ตัวอื่นๆ ที่เชื่อมต่ออยู่กับมันโดยตรง ด้วยการแลกเปลี่ยน Routing Information กับ Router ตัวอื่นๆ ที่เชื่อมต่อกับมันโดยตรงนี้เอง ทำให้ Router แต่ละตัว จะรู้จักซึ่งกันและกัน หรือรู้เขารู้เรา กระบวนการแลกเปลี่ยนนี้ จะดำเนินต่อไปเป็นห้วงๆ ของเวลาที่แน่นอนDistance Vector Algorithm ค่อนข้างเป็นแบบที่เรียบง่าย อีกทั้งออกแบบเครือข่ายได้ง่ายเช่นกัน ปัญหาหลักของของ Distance Vector Algorithm ได้แก่ การคำนวณเส้นทาง จะซับซ้อนขึ้น เมื่อขนาดของเครือข่ายโตขึ้นตัวอย่างของโปรโตคอลที่ทำงานภายใต้ Distance Vector Algorithm ได้แก่ อาร์ไอพี (RIP) หรือ Routing Information ProtocolLink State RoutingLink State Routing ถูกเรียกว่า "Shortest Path First (SPF)" Algorithm ด้วย Link State Routing นี้ Router แต่ละตัวจะทำการ Broadcast ข้อมูลข่าวสารออกมายัง Router ที่เชื่อมต่อกับมันโดยตรงแบบเป็นระยะๆ ข้อมูลข่าวสารนี้ยังครอบคลุมไป ถึงสถานะของการเชื่อมต่อระหว่างกันด้วยวิธีการของ Link State นี้ Router แต่ละตัวจะทำการสร้างผังที่สมบูรณ์ของเครือข่ายขึ้น จากข้อมูลที่มันได้รับจาก Router อื่นๆทั้งหมด จากนั้นจะนำมาทำการคำนวณเส้นทางจากผังนี้โดยใช้ Algorithm ที่เรียกว่า Dijkstra Shortest Path AlgorithmRouter จะเฝ้าตรวจสอบดูสถานะของการเชื่อมต่ออย่างต่อเนื่อง โดยการแลกเปลี่ยนระหว่างแพ็กเก็ตกับ Router เพื่อนบ้าน แต่หาก Router ไม่ตอบสนองต่อความพยายามที่จะติดต่อด้วย หลายๆครั้ง การเชื่อมต่อก็จะถือว่าตัดขาดลง แต่ถ้าหากสถานะ ของ Router หรือการเชื่อมต่อเกิดการเปลี่ยนแปลง ข้อมูลข่าวสารนี้จะถูก Broadcast ไปยัง Router ทั้งหมดที่อยู่ในเครือข่ายการจัดตั้ง Configure ให้กับวิธี การจัดเลือกเส้นทางแบบ Dynamicในการจัดตั้งค่าสำหรับการเลือกเส้นทาง (Routing) แบบ Dynamic จะมี 2 คำสั่งสำหรับการใช้งาน ได้แก่ คำสั่ง Router และ Network โดยคำสั่ง Router เป็นคำสั่งที่ทำให้เริ่มต้นการเกิดกระบวนการเลือกเส้นทางขึ้น รูปแบบของคำสั่งมีดังนี้Router (config)#router protocol [keyword]ต่อไปนี้เป็นคำอธิบายรายละเอียดของรูปแบบคำสั่งProtocol เป็นโปรโตคอลเลือกเส้นทางแบบใดแบบหนึ่ง ระหว่าง RIP IGRP OSPF หรือ Enhanced IGRPKeyword ตัวอย่าง เช่น เลขหมายของ Autonomous ซึ่งจะถูกนำมาใช้กับโปรโตคอลที่ต้องการระบบ Autonomous ได้แก่ โปรโตคอล IGRPคำสั่ง Network ก็เป็นคำสั่งที่มีความจำเป็นต่อการใช้งานเช่นกัน เนื่องจากมันสามารถกำหนดว่า Interface ใดที่จะเกี่ยวข้องกับการรับหรือส่ง Packet เพื่อการ Update ตารางเลือกเส้นทาง ขณะเกิดกระบวนการเลือกเส้นทางขึ้นคำสั่ง Network จะเป็นคำสั่งที่ทำให้ โปรโตคอลเลือกเส้นทางเริ่มต้นทำงานบน Interface ต่างๆ ของ Router อีกทั้งยังทำให้ Router สามารถโฆษณาประชาสัมพันธ์เครือข่ายที่ตนดูแลอยู่ ได้อีกด้วย รูปแบบของคำสั่งมีดังนี้Router (config-router)#network network- numberNetwork-number ในที่นี้หมายถึง เครือข่ายที่เชื่อมต่อกันโดยตรง และ Network Number จะต้องอยู่ในมาตรฐาน เลขหมาย ของ INTERNIC
8. Protocal ที่เลือกเส้นทางแบบ dynamic มีอะไรบ้าง
ตอบโปรโตคอลเลือกเส้นทางแบบ Dynamic มีอยู่ หลายรูปแบบ ดังนี้1. Interior Gateway Routing Protocol2.Exterior Gateway Routing Protocol3. Distance Vector Routing Protocol4. Link State Routing ProtocolInterior เป็น Protocol ที่ใช้แลกเปลี่ยนฐานความรู้ระหว่าง Roter ภายในองค์กรเดียวกัน ซึ่งได้แก่ RIP , IGRP ,EIGRP และ OSPF Exterior เป็น Protocol ที่ใช้แลกเปลี่ยนฐานความรู้ต่างองค์กรกันหรือความน่าเชื่อถือต่างกัน ซึ่งได้แก่ BGP, EGP Distance Vector เป็นโปรโตคอลเลือกเส้นทางที่ Router ใช้เพื่อการสร้างตาราง Routing และจัดการนำแพ็กเก็ตส่งออกไปยังเส้นทางที่กำหนด โดย อาศัยข้อมูลเกี่ยวกับระยะทาง เช่น Hop เป็นตัวกำหนดว่า เส้นทางใดเป็นเส้นทางที่ดีที่สุด ที่จะนำแพ็กเก็ตส่งออกไปที่ปลายทาง โดยถือว่า ระยะทางที่ใกล้ที่สุด เป็นเส้นทางที่ดีที่สุด และแอดเดรส ของเครือข่ายปลายทางเป็น VectorLink State Routing ถูกเรียกว่า "Shortest Path First (SPF)" Algorithm ด้วย Link State Routing นี้ Router แต่ละตัวจะทำการ Broadcast ข้อมูลข่าวสารออกมายัง Router ที่เชื่อมต่อกับมันโดยตรงแบบเป็นระยะๆ ข้อมูลข่าวสารนี้ยังครอบคลุมไปถึงสถานะของการเชื่อมต่อระหว่างกันRouting Protocols (เส้นทางการเชื่อมต่อ)Exterior routing Protocol (EGP) เป็นโปรโตคอล สำหรับการแลกเปลี่ยนข้อมูลของ router ระหว่าง 2 เครือข่ายของ gateway host ในระบบเครือข่ายแบบอัตโนมัติ ซึ่ง EGP มีการใช้โดยทั่วไป ระหว่าง host บนอินเตอร์เน็ต เพื่อแลกเปลี่ยนสารสนเทศของตาราง routing โดยตาราง routing ประกอบด้วยรายการ router ตำแหน่งที่ตั้ง และเมทริกของค่าใช้จ่ายของแต่ละ router เพื่อทำให้สามารถเลือกเส้นทางที่ดีที่สุด กลุ่มของ router แต่ละกลุ่มจะใช้เวลาภายใน 120 วินาที ถึง 480 วินาที ในการส่งข้อมูลส่งตาราง routing ทั้งหมดไปยังเครือข่ายอื่น ซึ่ง EGP -2 เป็นเวอร์ชันล่าสุดของ EGP Border Gateway Protocol (BGP) เป็นโปรโตคอลสำหรับการแลกเปลี่ยนข้อมูลของเส้นทางระหว่าง gateway host (ซึ่งแต่ละที่จะมี router ของตัวเอง) ในเครือข่ายแบบอัตโนมัติ BGP มักจะได้รับการใช้ระหว่าง gateway host บนระบบอินเตอร์เน็ต ตาราง routing ประกอบด้วยรายการของ router ตำแหน่งและตารางค่าใช้จ่าย (cost metric) ของเส้นทางไปยังrouterแต่ละตัวเพื่อการเลือกเส้นทางที่ดีที่สุด host ที่ใช้การติดต่อด้วยประเภทของ Routing ภายใน Network ที่เชื่อมต่อกับเนตเวิคโดยตรงRouting Information Protocol (RIP) เป็นโปรโตคอลที่ใช้อย่างกว้างขวาง สำหรับการจัดการสารสนเทศของ router ภายในเครือข่าย เช่น เครือข่าย LAN ของบริษัท หรือการติดต่อภายในกลุ่ม ของเครือข่าย RIP ได้รับการจัดชั้นโดย Internet Engineering Task Force (IETF) ให้เป็นหนึ่งในโปรโตคอลของInternet Gateway Protocol (หรือ InteriorGatewayProtocol)Open Shortest Path First (OSPF) ถือเป็น เร้าติ้งโปรโตคอล (Routing Protocol) ตัวหนึ่งที่นิยมใช้กันอย่างแพร่หลายมากที่สุดในระบบเน็ตเวิร์ก เนื่องจากมีจุดเด่นในหลายด้าน เช่น การที่ตัวมันเป็น Routing Protocol แบบ Link State, การที่มีอัลกอรึทึมในการค้นหาเส้นทางด้วยตัวเอง ซึ่งเปรียบเสมือนว่า ตัวของ เราเตอร์ที่รัน OSPF ทุกตัวเป็นรูท (Root) หรือ จุดเริ่มต้นของระบบไปยังกิ่งย่อยๆ หรือโหนด (Node) ต่างๆ ซึ่งเป็นเทคนิคในการลดเส้นทางที่วนลูป (Routing Loop) ของการ Routing ได้เป็นอย่างดีEnhance Interior Gateway Routing Protocol (EIGRP) นั้นถือได้ว่าเป็น เราติ้งโปรโตคอลที่มีความรวดเร็วสูงสุดของซิสโก้ในการค้นหาเส้นทางภายใน Intra-AS (Interior Routing Protocol: เราติ้งโปรโตคอลภายใน Autonomous System) ซึ่ง ในเราติ้งโปรโตคอลแบบ EIGRP นี้ จะเป็นการนำเอาข้อดีของการเราติ้งแบบ Distance Vector และ Link State มาผสมผสานกัน (ในหนังสือบางเล่มจะเรียก เราติ้งโปรโตคอลแบบนี้ว่า “Hybrid” (ลูกผสม) หรือ Advanced Distance Vector)
9. อธิบาย Protocal Distance Vector ให้เข้าใจ
ตอบลักษณะที่สำคัญของการติดต่อแบบ Distance-vector คือ ในแต่ละ Router จะมีข้อมูล routing table เอาไว้พิจารณาเส้นทางการส่งข้อมูล โดยพิจารณาจากระยะทางที่ข้อมูลจะไปถึงปลายทางเป็นหลัก จากรูป Router A จะทราบว่าถ้าต้องการส่งข้อมูลข้ามเครือข่ายไปยังเครื่องที่อยู่ใน Network B แล้วนั้น ข้อมูลจะข้าม Router ไป 1 ครั้ง หรือเรียกว่า 1 hop ในขณะที่ส่งข้อมูลไปยังเครื่องใน Network C ข้อมูลจะต้องข้ามเครือข่ายผ่าน Router A ไปยัง Router B เสียก่อน ทำให้การเดินทางของข้อมูลผ่านเป็น 2 hop อย่างไรก็ตามที่ Router B จะมองเห็น Network B และ Network C อยู่ห่างออกไปโดยการส่งข้อมูล 1 hop และ Network A เป็น2 hop ดังนั้น Router A และ Router B จะมองเห็นภาพของเครือข่ายที่เชื่อมต่ออยู่แตกต่างกันเป็นตารางข้อมูล routing table ของตนเอง จากรูปการส่งข้อมูลตามลักษณะของ Distance-vector routing protocol จะเลือกหาเส้นทางที่ดีที่สุดและมีการคำนวณตาม routing algorithm เพื่อให้ได้ผลลัพธ์ออกมา ซึ่งมักจะเลือกเส้นทางที่ดีที่สุดและมีจำนวน hop น้อยกว่า โดยอุปกรณ์ Router ที่เชื่อมต่อกันมักจะมีการปรับปรุงข้อมูลใน routing table อยู่เป็นระยะๆ ด้วยการ Broadcast ข้อมูลทั้งหมดใน routing table ไปในเครือข่ายตามระยะเวลาที่ตั้งเอาไว้การใช้งานแบบ Distance-vector เหมาะกับเครือข่ายที่มีขนาดไม่ใหญ่มากและมีการเชื่อมต่อที่ไม่ซับซ้อนเกินไป ตัวอย่างโปรโตคอลที่ทำงานเป็นแบบ Distance-vector ได้แก่ โปรโตคอล RIP (Routing Information Protocol) และโปรโตคอล IGRP (Interior Gateway Routing Protocol) เป็นต้น
10. Protocol BGP คืออะไรมีหลักการทำงานอย่างไร
ตอบ Border Gateway Protocol (BGP) เป็นโปรโตคอลสำหรับการแลกเปลี่ยนข้อมูลของเส้นทางระหว่าง gateway host (ซึ่งแต่ละที่จะมี router ของตัวเอง) ในเครือข่ายแบบอัตโนมัติ BGP มักจะได้รับการใช้ระหว่าง gateway host บนระบบอินเตอร์เน็ต ตาราง routing ประกอบด้วยรายการของ router ตำแหน่งและตารางค่าใช้จ่าย (cost metric) ของเส้นทางไปยัง router แต่ละตัว เพื่อการเลือกเส้นทางที่ดีที่สุด host ที่ใช้การติดต่อด้วย BGP จะใช้ Transmission Control Protocol (TCP) และส่งข้อมูลที่ปรับปรุงแล้วของตาราง router เฉพาะ host ที่พบว่ามีการเปลี่ยนแปลง จึงมีผลเฉพาะส่วนของตาราง router ที่ส่ง BGP-4 เป็นเวอร์ชันล่าสุด ซึ่งให้ผู้บริหารระบบทำการคอนฟิก cost metric ตามนโยบาย การติดต่อด้วย BGP ของระบบ แบบอัตโนมัติที่ใช้ Internet BGP (IBGP) จะทำงานได้ไม่ดีกับ IGP เนื่องจาก router ภายในระบบอัตโนมัติต้องใช้ตาราง routing 2 ตาราง คือ ตารางของ IGP (Internet gateway protocol) และตารางของ IBGP BGP เป็นโปรโตคอลที่ทันสมัยกว่า Exterior Gateway Protocol
11. สายใยแก้วนำแสงมีกี่ชนิด
ตอบ ชนิดคือไฟเบอร์ออฟติค
12. สัญญาณแก้วใยแก้วนำแสงต่างๆ
ตอบ อนาล็อกกับดิจิตอล
13. จงบอกข้อดีของเส้นใยแก้วนำแสง
ตอบ 1. มีน้ำหนักเบาและไม่เป็นสนิม ซึ่งเหมาะมากสำหรับใช้งานในยานอวกาศ และรถยนต์2. เส้นใยแสง 1 เส้น สามารถที่จะมีช่องสัญญาณเสียงได้มากเท่ากับ 1500 คู่สาย3. ความห่างของตัวขยายสัญญาณสำหรับเส้นใยแสงมีค่าตั้งแต่ 35 ถึง 80 กิโลเมตร ซึ่งตรงข้ามกับสายธรรมดา ซึ่งมีค่าตั้งแต่ 1 ถึงแค่ 1.5 กิโลเมตรเท่านั้น4. เส้นใยแสงจะไม่มีการรบกวนจากฟ้าแลบ และการแผ่รังสีของคลื่นแม่เหล็กไฟฟ้า
14. ขนาดของ core และ cladding ในเส้นใยแก้วนำแสงแต่ละชนิด
ตอบ แท่งควอร์ต ซึ่งผ่านกระบวนการ Modefied Chemical Vapor Deposition (MCVD) แล้วจะถูกวางในแนวตั้งในหอดึง (Drawing Tower) ซึ่งจะถูกให้ความร้อนต่ออีก (2200 F) และถูกดึงลงด้านล่าง โดยหลักการของการหลอมเหลวควบคุมด้วยคอมพิวเตอร์ และขบวนการการดึง เพื่อจะทำให้เส้นใยแสงคุณภาพสูง มีความยาวประมาณ 6.25 กิโลเมตร และเส้นผ่าศูนย์กลางประมาณ 125 ไมโครเมตร ศูนย์กลางซึ่งถูกเรียกว่า แกน หรือ CORE (เส้นผ่าศูนย์กลาง 8 ไมโครเมตร) จะถูกล้อมรอบด้วยควอร์ตที่บริสุทธิ์น้อยกว่า ซึ่งถูกเรียกว่า ชั้นคลุม หรือ cladding (ขอบเขตประมาณ 117 ไมโครเมตร
15. การเชื่อมต่อดดยวิธีการหลอมรวม ทำได้โดยวิธีใด
ตอบ การเชื่อมต่อแบบหลอมรวม เป็นการเชื่อมต่อ Fiber Optic สองเส้นเข้าด้วยกัน โดยการให้ความร้อนที่ปลายของเส้น Fiber Optic จากนั้นปลายเส้น Fiber Optic จะถูกดันออกมาเชื่อมต่อกัน การเชื่อมต่อกันในลักษณะนี้ เป็นการเชื่อมต่อโดยถาวร จนทำให้ดูเหมือนรวมเป็นเส้นเดียวกัน การสูญเสียจากการเชื่อมต่อในลักษณะนี้ จะทำให้มีความสูญเสีย ประมาณ 0.01 - 0.2 dB ในขั้นตอนการเชื่อมต่อนี้ ความร้อนที่ทำให้ปลายเส้น Fiber Optic อ่อนตัวลงด้วยประกายไฟที่เกิดจากการ Arc ระหว่างขั้ว Electrode ขณะทำการ หลอมรวม ซึ่งจะยังผลให้การเชื่อมต่อของ Fiber Optic เป็นเนื้อเดียวกัน

วันจันทร์ที่ 21 กรกฎาคม พ.ศ. 2551

ข้อสอบปรนัย เราเตอร์
1.อุปกรณ์ที่นิยมใช้ในการเชื่อมโยงเครือข่ายหลักทั้ง LAN และ WAN ประกอบด้วย อะไรบ้าง
ก.บริดจ์ (Bridge)
ข.เราเตอร์ (Router) และสวิตช์ (Switch)
ค.บริดจ์ (Bridge) เราเตอร์ (Router) และสวิตช์ (Switch)
ง.บริดจ์ (Bridge) และ เราเตอร์ (Router)
2.อุปกรณ์สวิตช์มีหลายแบบ หากแบ่งกลุ่มข้อมูลเป็นแพ็กเก็ตเล็ก ๆ และเรียกใหม่ว่า "เซล" (Cell) กลายเป็น "เซลสวิตช์" (Cell Switch) หรือที่รู้จักกันในนามว่าอะไร
ก.เอทีเอ็มสวิตช์ (ATM Switch)
ข.อีเทอร์เน็ตสวิตช์ (Ethernet Switch)
ค.เฟรมรีเลย์(Frame Relay)
ง.ถูกทุกข้อ
3.แอดเดรสที่ใช้ในเครือข่ายอินเทอร์เน็ต ใช้รหัสตัวเลขกี่บิตที่เรียกว่า"ไอพีแอดเดรส" (IP Address)
ก.16 บิต
ข.32บิต
ค.64บิต
ง.ถูกทุกข้อ
4.การออกแบบและจัดรูปแบบเครือข่ายในองค์กรที่เป็นอินทราเน็ต ซึ่งเชื่อมโยงได้ในระบบใด
ก.แลน
ข.แวน
ค.แลน และ แวน
ง.ถูกทุกข้อ
5.ผลิตภัณฑ์ของซิสโก้ราคาการวางจำหน่ายCisco 7200 Series Network Processing Engine
ก.$19,000
ข.$15,000
ค.$1,250
ง.$1,000
6.ผลิตภัณฑ์ของซิสโก้ราคาการวางจำหน่ายCisco 7200 VPN Services Adapter
ก.1,000
ข.$15,000
ค.$1,250
ง.$19,000
7.ผลิตภัณฑ์ของซิสโก้ราคาการวางจำหน่ายCisco 7200 Port Adapter Jacket Card
ก.$15,000
ข.$1,250
ค.$19,000
ง.$1,000
8.โปรโตคอลที่ใช้ในการสร้างเส้นทางและมีคุณสมบัติรองรับ MD5 ได้แก่ อะไร
ก.BGP,OSPF,IS-IS,EIGRP และ RIPv.2
ข.OSPF,IS-IS,EIGRP และ RIPv.2
ค.IS-IS,EIGRP และ RIPv.2
ง.ถูกทุกข้อ
9.เราเตอร์ตระกูล 3G นี้รองรับคุณสมบัติสำหรับรักษาความปลอดภัยแบบไร้สายล่าสุด คืออะไร
ก. WPA
ข. WPA2
ค. WPA และ WPA2
ง.ถูกทุกข้อ
10.การใช้เชื่อมโยงระหว่างอีเทอร์เน็ตกับ อีเทอร์เน็ต (Ethernet) บริดจ์มีใช้มานาน ตั้งแต่ปี ค.ศ. ใด
ก.ปี ค.ศ. 1970
ข.ปีค.ศ.1975
ค.ปี ค.ศ. 1980
ง.ปีค.ศ.1989

ข้อสอบอัตนัย เราเตอร์

1.การรับส่งข้อมูลเป็นชุดเล็ก ๆ ที่เรียกว่า

ตอบ แพ็กเก็ต (Packet)

2.เครือข่ายแบบ LAN และ WAN อุปกรณ์ที่นิยมใช้ในการเชื่อมโยงคือ

ตอบ เราเตอร์ (Router)

3.อุปกรณ์สวิตช์ข้อมูลจึงมีเวลาหน่วงภายในตัวสวิตช์ต่ำมาก จึงสามารถนำมาประยุกต์กับงานที่ต้องการเวลาจริง เช่น

ตอบ การส่งสัญญาณเสียง วิดีโอ ได้ดี

4.เฟรมรีเลย์ (Frame Relay) และเอทีเอ็ม สวิตช์ (ATM Switch) สามารถสวิตช์ข้อมูลขนาดกี่บิตต่อวินาที

ตอบ หลายร้อยล้านบิตต่อวินาทีได้

5.อุปกรณ์สวิตช์ มีหลายแบบ หากแบ่งกลุ่มข้อมูลเป็นแพ็กเก็ตเล็ก ๆ และเรียกใหม่ว่า

ตอบ เซล (cell)

6.สวิตซ์ตามมาตรฐานเฟรมข้อมูลที่เป็นกลางและสามารถนำข้อมูลอื่นมาประกอบภายในได้ ก็เรียกว่า
ตอบ เฟรมรีเลย์ (Frame Relay)

7.โครงเครื่อง Cisco 7200VXR โดยมีประสิทธิภาพเพิ่มขึ้นเป็น กี่เท่า
ตอบ 2 เท่า

8.ระบบ LAN และ WAN ต้องอาศัยอุปกรณ์ใดเป็น อุปกรณ์เชื่อมโยง มาตรฐานการเชื่อมต่อ
ตอบ จากเครือข่ายพื้นฐานเป็นอีเทอร์เน็ต

9.สวิตช์ข้อมูลในระดับเฟรมของอีเทอร์เน็ต ก็เรียกว่า
ตอบ อีเทอร์เน็ตสวิตช์ (Ethernet Switch)

10.เซลสวิตช์" (Cell Switch) หรือที่รู้จักกันในนามว่า
ตอบ เอทีเอ็มสวิตช์ (ATM Switch)

วันอังคารที่ 15 กรกฎาคม พ.ศ. 2551

พื้นฐาน Protocol Protocol คือ ระเบียบวิธีการที่กำหนดขึ้นสำหรับสื่อสารข้อมูล ให้สามารถแลกเปลี่ยนข้อมูลกันได้อย่างถูกต้อง
Transmission Control Protocol (TCP)เป็น Protocol ที่ให้บริการแบบ Connection-Oriented คือจะทำการสร้างการเชื่อมต่อระหว่างต้นทาง (Source) และ ปลายทาง (Destination) ก่อนที่จะทำการรับส่งข้อมูล และจะทำการส่งข้อมูลทั้งหมดจนแล้วเสร็จ ทำให้มีความน่าเชื่อถือมากInternet Protocol (IP)เป็น Protocol ที่ทำหน้าที่จัดการเกี่ยวกับการรับ-ส่ง Packet เป็น Protocol ที่ให้บริการแบบConnectionless คือจะไม่ทำการสร้างการเชื่อมต่อระหว่างต้นทาง (Source) และ ปลายทาง (Destination) ก่อนที่จะทำการรับส่งข้อมูล กล่าวคือในการส่งข้อมูลแต่ละครั้งนั้น Source จะทำการส่งข้อมูลออกไปยัง Destination เลยโดยไม่ได้ทำการตกลงกันก่อน ทำให้มีความน่าเชื่อถือน้อยเพราะข้อมูลอาจสูญหายระหว่างทางได้Media Access Control (MAC) AddressMAC Address คือ หมายเลขประจำตัวของอุปกรณ์ที่ต่ออยู่ในเครือข่าย ซึ่งกำหนดมาจากบริษัทผู้ผลิต H/W เป็นตัวเลขฐาน 16 จำนวน 12 ตัว ซึ่งจะไม่ซ้ำกันและแก้ไขไม่ได้IP AddressIP Address หรือ หมายเลขไอพี คือ หมายเลขประจำตัวที่ใช้ในการระบุตัวตนของอุปกรณ์ต่างๆ เช่น computer, router และ server ที่อยู่ในเครือข่าย ซึ่งปัจจุบันที่ใช้งานอยู่นี้จะเป็นเวอร์ชั่น 4 (IPV4) ซึ่งจะต่างกับ MAC Address ตรงที่ค่า IP Address นั้นสามารถแก้ไขเปลี่ยนแปลงได้ แต่ในเครือข่ายเดียวกันต้องไม่ซ้ำกันต้อง IP Address เป็นชุดตัวเลขฐานสองขนาด 32 บิต โดยเพื่อให้ง่ายในการจำจึงแบ่งออกเป็น 4 ส่วนๆ ละ 8 บิต (หรือ 1 Byte) คั่นแต่ละส่วนด้วยจุด (.) แล้วแทนค่าเป็นเลขฐาน 10 แต่ละส่วนมีค่าอยู่ระหว่าง 0 - 255 ตัวอย่างเช่น 11000000.00000001.00000010.00000011 เขียนแทนค่าเป็นเลขฐาน 10 ได้เป็น 192.1.2.3Class ของ IP AddressIP Address นั้นจะแบ่งออกเป็น 5 classes คือ A, B, C, D และ E แต่ขณะนี้ใช้เพียง 3 classes คือ Class A, Class B และ Class C ซึ่งค่า IP Address นั้นจะแบ่งออกเป็น 2 ส่วน ดังรูปด้านล่าง ส่วนแรกเป็น Network number ส่วนที่สองเป็น Host number คือ คอมพิวเตอร์ที่อยู่ในเครือข่ายนั้นIP Address Class AClass A ใช้ไบต์แรก (8 bit) เป็น Network number และให้บิตแรก เป็น 0 จึงมี Network number ระหว่าง 0 - 127 (126 เครือข่าย) ส่วน Host number ใช้ 3 ไบต์ (24 บิต) จึงมีคอมพิวเตอร์ในเครือข่ายได้ถึง 16,777,124 เครื่อง เหมาะสำหรับเครือข่ายส่วนบุคคลช่วงของ IP Address ใน Class A คือ ตั้งแต่ 1.0.0.0 - 127.255.255.255IP Address Class BClass B ใช้ 2 ไบต์แรก (16 bit) เป็น Network number และให้ 2 บิตแรก เป็น 10 จึงมี Network number เท่ากับ 2 ยกกำลัง (16-2) หรือ 16,382 เครือข่าย ส่วน Host number ใช้ 2 ไบต์ (16 bit) จึงมีคอมพิวเตอร์ในเครือข่ายได้ถึง 65,534 เครื่องช่วงของ IP Address ใน Class B คือ ตั้งแต่ 128.0.0.0 - 191.255.255.255IP Address Class CClass C ใช้ 3 ไบต์แรก (24 bit) เป็น Network number และให้ 3 บิตแรก เป็น 110 จึงมี Network number เท่ากับ 2 ยกกำลัง (24-3) หรือ 2,097,152 เครือข่าย ส่วน Host number ใช้ 1 ไบต์ (8 bit) จึงมีคอมพิวเตอร์ในเครือข่ายได้ถึง 254 เครื่องช่วงของ IP Address ใน Class C คือ ตั้งแต่ 192.0.0.0 - 223.255.255.255IP Address Class DClass D จะกำหนดให้ 4 บิตแรก เป็น 1110 ใช้ในการทำ Multicasting ช่วงของ IP Address ใน Class D คือ ตั้งแต่ 224.0.0.0 - 239.255.255.255IP Address Class EClass E จะกำหนดให้ 5 บิตแรก เป็น 11110 โดยสงวนไว้สำหรับอนาคต ช่วงของ IP Address ใน Class E คือ ตั้งแต่ 240.0.0.0 - 247.255.255.255Private IP AddressPrivate IP Address คือ IP Address ที่กำหนดขึ้นสำหรับการใช้งานส่วนตัวหรือภายในองค์กร โดยสามารถใช้งานได้เลยโดยไม่ต้องทำการลงทะเบียน ซึ่งค่า Private IP Address นี้หากมีการส่งข้อมูล (Packet) โดยส่วนมากแล้ว Router จะทำการ Drop ทิ้งไปเอง หรือไม่ก็จะทำการส่งต่อไปเรื่อยๆจนหมดอายุไปเอง ค่า IP Address ที่กำหนดให้เป็น Private IP Address นั้นมี ดังนี้Class A10.0.0.0 - 10.255.255.255Class B172.16.0.0 - 172.31.255.255Class C192.168.0.0 - 192.168.255.255IP Address version 6IP address เวอร์ชั่น 4 (IPV4) ซึ่งใช้อยู่ปัจจุบันนั้น ทางทฤษฏีสามารถใช้ได้จำนวน 232 เครื่อง แต่จากการแบ่งออกเป็น Class ย่อย และการเพิ่มจำนวนเครื่องคอมพิวเตอร์อย่างมากมาย เป็นผลให้ จำนวน IP Address จะมีไม่เพียงพอต่อความต้องการใช้งาน โดยทางแก้ของปัญหานี้ทำได้โดยการเพิ่มจำนวนบิตขึ้น และเรียกว่า IPv6 โดยจะมีขนาด 128 bitSubnet และ Subnet MaskSubnet คือ การแบ่งเครือข่ายใหญ่ให้เป็นหลายเครือข่ายย่อยโดยการนำเอาบิตที่เป็นส่วนของ Host ID มาเป็น Network ID ผลที่ได้ คือ จำนวน Network ID หรือ เครือข่ายจะเพิ่มขึ้น แต่จำนวนของ Host ID หรือ เครื่องคอมพิวเตอร์จะลดลงSubnet Mask คือ ตัวเลขที่ใช้แสดงว่าส่วนไหนของ IP Address เป็น Network ID และส่วนไหนเป็น Host ID ซึ่ง Subnet Mask จะมีความยาวเท่ากับ IP Address คือ 32 bit โดยในส่วน Network ID นั้นทุก bit จะเป็น 1 และในส่วน Host ID นั้นทุก bit จะเป็น 0วัตถุประสงค์หรือเหตุผลในการต้องทำ Subnet นั้น ก็เพื่อให้ง่ายต่อการจัดการระบบเครือข่าย และป้องกันการมีข้อมูลที่ไม่จำเป็นมากเกินไปในเครือข่าย โดยเฉพาะใน Class A และ B ซึ่งมีจำนวน Host ได้ 16,777,124 และ 65,534 ตามลำดับ ซึ่งถ้าไม่ทำการแบ่ง Subnet แล้วเครือข่ายจะใหญ่มาก ทำให้ปริมาณ Broadcast มากเกินไปโดยการทำ Subnet นั้นมีหลักการอยู่ 2 ข้อ คือ1. หมายเลขส่วนที่เป็น Subnet (Subnet ID) นั้นไม่สามารถเป็น 0 ได้ทั้งหมด โดยหากเป็น 0 ทั้งหมดจะเป็นการอ้างถึง " Network "2. หมายเลขส่วนที่เป็น Subnet (Subnet ID) นั้นไม่สามารถเป็น 1 ได้ทั้งหมด โดยหากเป็น 1 ทั้งหมดจะใช้สำหรับการ " Broadcast "วิธีการระบุ Network ของ Subnetการระบุ Network ของ Subnet นั้นทำได้โดยการ AND กันระหว่าง IP Address กับ Subnet Mask เช่น IP Class B 172.20.33.24 และ Subnet Mask 255.255.224.0 การคำนวณจำนวน Network และ Host จำนวน Host ใน Subnet = 2n - 2 เมื่อ n คือ จำนวน bit ของหมายเลข Hostจำนวน Subnet = 2n - 2 เมื่อ n คือ จำนวน bit ของหมายเลข Subnet.................................................
ข้อสอบปรนัย
Mark 2 bit class A มี host อะไร
ก. 23068676
ข. 23068675
ค. 23068673
ง. 23068672
Mark 2 bit class A มี subnet เท่าไร
ก. 0
ข. 1
ค. 2
ง. 3
Mark 2 bit class B มี subnet เท่าไร
ก. 0
ข. 1
ค. 2
ง. 3
4. 6 Subnet class A มี Mark อะไร
ก. 3
ข. 4
ค. 5
ง. 6
5. 14 Subnet class C มี Mark อะไร
ก. 3
ข. 4
ค. 5
ง. 6
6.Mark 2 bit class C มีค่า net * host เท่าไร
ก. 504
ข. 506
ค. 508
ง. 510
7 .Mark 5 bit class B มีค่า net * host เท่าไร
ก. 32768
ข. 983040
ค. 32767
ง. 983041
8. Mark 2 bit class A มีค่า net * host เท่าไร
ก. 23068672
ข. 230686731
ค. 46137342
ง. 46137343
N.H.H.H ข้อไหนแปลงค่าได้ถูกต้อง
ก. 00000000,00000000,00000000,11111111
ข. 00000000,00000000,11111111,11111111
ค. 11111111,00000000,11111111,00000000
ง. 11111111,00000000,00000000,00000000
N.N.H.H ข้อไหนแปลงค่าได้ถูกต้อง
ก. 00000000,00000000,11111111,11111111
ข. 11111111,11111111,00000000,00000000
ค. 11111111,00000000,11111111,00000000
ง. 00000000,11111111,00000000,11111111
ข้อสอบอัตนัย
1. จงหา Mark 3 bit class A ให้เป็น subnet
2^3=8-2=6 subnet
2. จงหา Mark 2 bit class A ให้ได้ค่า net * Host
2*254 = 508 Host
3. จงหา Mark 10 bit class A ให้ได้ค่า Subnet
2^10 = 2048-2 = 2046 Subnet
4. จงบอกวิธีการหาค่า Host
หาโดย นำ 2 ยกกำลังด้วยจำนวนศูนย์ที่หา
ได้คำตอบที่ได้ลบด้วยสอง เช่น 2^22=23068672-2=23068670
5. จงบอกวิธีการหาค่า Subnet
ดูจาก Mart ว่ามีกี่บิต นำ2 ยกกำลังด้วยจำนวนบิตคำตอบที่
ได้ลบด้วยสอง เช่น 2^2=4-2=2
6. ถ้าค่า Mark 6 class c ค่า Subnet จะมีค่าเท่าไร?
2^6=128-2=126 subnet
7. ถ้า Mark 3 bit class B Host จะมีค่าเท่าไร?
2^13=8192-2= 8190 Host
8. จงหา Mark 4 bit class B ให้เป็น subnet
2^4=16-2=14 subnet
9. ถ้า Mark 3 bit class C Host จะมีค่าเท่าไร?
2^5=64-2=62 Host
10. ถ้าค่า Mark 15 class A ค่า Subnet จะมีค่าเท่าไร?
2^15=3657008-2=3657006 subnet
Internet
PANTIP.COM :BASIC [BA2591636] อินเตอร์เน็ตไร้สาย
อัตราการส่งข้อมูล ใช้สาย : 10/100Mbps (IEEE 802.3, IEEE 802.3u) ... ไม่ว่าจะเป็นการแชร์อินเทอร์เน็ตร่วมกัน ทั้งใน แบบไร้สายและใช้สาย ...สำหรับมาตรฐานความเร็วที่ Router รุ่นนี้สนับสนุน ได้แก่ IEEE 802.3 10Base-T ... ซึ่งช่วยประหยัดค่าใช้จ่ายของค่าบริการอินเทอร์เน็ตไปได้มาก และเป็น Switch ...อัตราการส่งข้อมูล, ใช้สาย : 10/100Mbps (IEEE 802.3, IEEE 802.3u) ... จุดเด่น : รองรับการแชร์อินเทอร์เน็ตการ
SURECOM EP-3808 Internet Super Airport

EP-3808 Internet Super Airportเป็นอุปกรณ์ประเภท 7 พอร์ต Internet Switching Rounter

มาพร้อมสวิตซ์ 7 พอร์ตซึ่งใช้เทคโนโลยีN-Way 10/100 Mbpsให้ความรวดเร็วในการรับส่งข้อมูล

ด้วยระบบ Virtual Server mapping ช่วยเพิ่มความปลอดภัยให้กับserverในการเข้ามาใช้ internet จากหลากหลายuser

รองรับการปรับเปลี่ยนmoduleแบบslide-in module อาธิ V.35 ,56K Modem ,ISDN ,WAN ,RS-232

มี DHCP serverเพื่อทำการกำหนด IP Address ให้กับเครื่องในวงnetwork

มี Web management ที่ให้ฟังก์ชั่นการจัดการ และการทำคอนฟิกกูเรชั่น

สามารถสร้าง E-mail/web/FTP server บนระบบแลนสำหรับการใช้งานระยะไกล(remote access)

ระบบPackage Filter Function ช่วยเพิ่มความสามารถให้กับระบบป้องกัน firewall

มีConnectorรองรับการเชื่อมต่อแบบ Dial-in/Dial-out/Leased line
-- IEEE802.3 10BASE-T , IEEE802.3u 100BASE-TX Fast Ethernet-- ANSI/IEEE Std 802.3 N-Way auto-negotiation-- IEEE 802.3 Fram type: Transparent-- IEEE 802.3 MAC layer frame size: 64-1518 BytesSwitch Funtion-- Store and Forward mode switching-- Backpressure flow control for Half-Duplex-- IEEE 802.3x flow control for Full-Duplex-- 1K Self-learning MAC Address table-- 1M bytes Switching buffer-- 148,800 Packet Filtering/Forwarding rate-- Full Wire Speed for all ports simultaneouslyNo. of Port 7 RJ-45 ports
· 10BASE2 (thinnet)
· 10BASE-T
· EAD-socket
· Computer network
· Local area network
[edit] References
1. ^ All-in-One Network+ Certification Exam Guide, Mike Meyers, 3rd Ed., McGraw-Hill, 2004, p. 79.
2. ^ IEEE Standard 802.3-1985, IEEE, pp. 121, ISBN 0-471-82749-5
This article was originally based on material from the Free On-line Dictionary of Computing, which is licensed under the GFDL.
Retrieved from "http://en.wikipedia.org/wiki/10BASE5"
Categories: Ethernet cables
Views
· Article
· Discussion
· Edit this page
· History
Personal tools
· Log in / create account

Navigation
· Main Page
· Contents
· Featured content
· Current events
· Random article
Interaction
· About Wikipedia
· Community portal
· Recent changes
· Contact Wikipedia
· Donate to Wikipedia
· Help
Ethernet 100Base-TX to FXMedia Converter
· Multiple-channel 100Base-TX to Fiber Optic 100base-FX Media Converterproviding 6 or 12 independent conversion channels - field upgradeable to a fully managed device
· Top Performance: maximal distances (2000m F/O, 100m STP) and up to 150km over s/m fiber
· Rack-Space Saving: 12 channels in an 1U high enclosure
· Reliability: redundant (optional) power-supply
· Maintainability: directly-removable/hot-swap power-supply
· FDX advertising to get more from your network
· Fault Propagation with Link Test capability
· -48VDC models for Telco applications
·
 100BASE-FX Fast Ethernet connection.
 Supports link length of up to 2.2 kilometers using multi-mode fiber.
อ้างอิง
www.pantip.com/tech/basic/topic/BA2591636/BA2591636.html - 29k - หน้าที่ถูกเก็บไว้ - หน้าที่คล้ายกัน
EP-816DX, EP-4504AX Switch และ Router คุณภาพจาก Surecom
www.value.co.th/products/dlink/di-808hv.asp - 11k -
http://www.google.com/search?q=cache:shFyf20QqV0J:www.buycoms.com/spec.asp%3FProductTypeID%3D64%26ProductID%3D11524+Internet+(ieee+802.3)&hl=th&ct=clnk&cd=9&gl=th&lr=lang_en
http://www.google.com/search?q=cache:13cDS0IwST4J:www.webopedia.com/TERM/1/10Base_2.htm+10+Base+2&hl=th&ct=clnk&cd=1&gl=th&lr=lang_en